Finite element model for active constrained-layer damping

Author(s):  
William C. Van Nostrand ◽  
Gareth J. Knowles ◽  
Daniel J. Inman
2002 ◽  
Vol 8 (6) ◽  
pp. 877-902 ◽  
Author(s):  
W. Laplante ◽  
T. Chen ◽  
A. Baz ◽  
W. Sheilds

Vibration and sound radiation from fluid-loaded cylindrical shells are controlled using patches of Active Constrained Layer Damping (ACLD). The performance and the enhanced damping characteristics via reduced vibrations and sound radiation in the surrounding fluid is demonstrated both theoretically and experimentally. A prime motivation for this work is the potential wide applications in submarines and torpedoes where acoustic stealth is critical to the effectiveness of missions. A finite element model is also developed to predict the vibration and the acoustic radiation in the surrounding fluid of the ACLD-treated cylinders. The developed model is used to study the effectiveness of the control and placement strategies of the ACLD in controlling the fluid-structure interactions. A water tank is constructed that incorporates test cylinders treated with two ACLD patches placed for targeting specific vibration modes. Using this arrangement, the effectiveness of different control strategies is studied when the submerged cylinders are subjected to internal excitation, and the radiated sound pressure level in the water is observed. Comparisons are made between the experimental results and the theoretical predictions to validate the finite element model.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
R. M. Kanasogi ◽  
M. C. Ray

This paper deals with the analysis of active constrained layer damping (ACLD) of smart skew laminated composite plates. The constraining layer of the ACLD treatment is composed of the vertically/obliquely reinforced 1–3 piezoelectric composites (PZCs). A finite element model has been developed for accomplishing the task of the active constrained layer damping of skew laminated symmetric and antisymmetric cross-ply and antisymmetric angle-ply composite plates integrated with the patches of such ACLD treatment. Both in-plane and out-of-plane actuations by the constraining layer of the ACLD treatment have been utilized for deriving the finite element model. The analysis revealed that the vertical actuation dominates over the in-plane actuation. Particular emphasis has been placed on investigating the performance of the patches when the orientation angle of the piezoelectric fibers of the constraining layer is varied in the two mutually orthogonal vertical planes. Also, the effects of varying the skew angle of the substrate laminated composite plates and different boundary conditions on the performance of the patches have been studied. The analysis reveals that the vertically and the obliquely reinforced 1–3 PZC materials should be used for achieving the best control authority of ACLD treatment, as the boundary conditions of the smart skew laminated composite plates are simply supported and clamped-clamped, respectively.


2019 ◽  
Vol 9 (10) ◽  
pp. 2094 ◽  
Author(s):  
Jingyu Zhai ◽  
Jiwu Li ◽  
Daitong Wei ◽  
Peixin Gao ◽  
Yangyang Yan ◽  
...  

In this paper, vibration control of an aero pipeline system using active constrained layer damping treatment has been investigated in terms of the vibration and stress distribution. A three-dimensional finite element model of such a pipeline with active constrained layer damping (ACLD) patches is developed. The transfer of the driving force under harmonic voltage is analyzed based on the finite element model. The vibration control of the pipeline with active constrained layer damping treatment under different voltages is computed to analyze the influence of control parameters and structural parameters on the control effect. An experiment platform is developed to validate the above relations. Results show that the performance of the active constrained layer damping treatment is affected by the elastic modulus and thickness of the viscoelastic layer, control voltage and structure size. The performance increases significantly with the rising of the control voltage and cover area of ACLD patches among these parameters.


1998 ◽  
Vol 120 (4) ◽  
pp. 886-893 ◽  
Author(s):  
W. H. Liao ◽  
K. W. Wang

This paper is concerned with the enhanced active constrained layer (EACL) damping treatment with edge elements. A finite element time-domain-based model (FEM) is developed for the beam structure with partially covered EACL. The edge elements are modeled as equivalent springs mounted at the boundaries of the piezoelectric layer. The Golla-Hughes-McTavish (GHM) method is used to model the viscoelastic layer. The GHM dissipation coordinates can describe the frequency-dependent viscoelastic material properties. This model becomes the current active constrained layer (ACL) system model as the stiffness of the edge elements approaches zero. Without the edge elements and viscoelastic materials, the purely active system model can also be obtained from the EACL model as a special case. Lab tests are conducted to validate the models. The frequency responses of the EACL, current ACL, and purely active systems predicted by the FEM match the test results closely. Utilizing these models, analysis results are illustrated and discussed in Part (2) of this paper.


Author(s):  
W. H. Liao ◽  
K. W. Wang

Abstract This paper is concerned with the enhanced active constrained layer (EACL) damping treatment with edge elements. A finite element time-domain-based model (FEM) is developed for the beam structure with partially covered EACL. The edge elements are modeled as equivalent springs mounted at the boundaries of the piezoelectric layer. The transverse, axial, and shear motions are included. The energy method in combination with the Golla-Hughes-McTavish (GHM) viscoelastic modeling method is used. The GHM dissipation coordinates can describe the frequency-dependent viscoelastic material properties. This model becomes the current active constrained layer (ACL) system model as the stiffness of the edge elements approaches zero. Without the edge elements and viscoelastic materials, the purely active system model can also be obtained from the EACL model as a special case. Lab tests are conducted to validate the models. The frequency responses of the EACL, current ACL, and purely active systems predicted by the FEM match the test results closely. Utilizing these models, analysis results are illustrated and discussed in Part (II) of this paper.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Zhengchao Xie ◽  
Pak Kin Wong ◽  
Long Zhang ◽  
Hang Cheong Wong

This work proposes a coupled finite element model for actively controlled constrained layer damped (CLD) rotating plate with self-sensing technique and frequency-dependent material property in both the time and frequency domain analyses. Constrained layer damping with viscoelastic material can effectively reduce the vibration in rotating structures. However, most existing research models use complex modulus approach to model the viscoelastic material, but it limits to frequency domain analysis and the frequency dependency of the viscoelastic material is not well-included as well. It is meaningful use of the anelastic displacement fields (ADFs) that is done in order to include the frequency dependency of the material for both the time and frequency domains. Also, unlike previous ones, all types of damping are taken into account by this finite element model. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate in which the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator. This newly proposed finite element model is validated, and then, as shown in numerical studies, this proposed approach can achieve effective vibration reduction in both the frequency and time domains.


2017 ◽  
Vol 21 (2) ◽  
pp. 758-783
Author(s):  
Wei Li ◽  
Yansong He ◽  
Zhongming Xu ◽  
Zhifei Zhang

This paper proposed a new reduced passive constrained layer damping finite element model. The passive constrained layer damping structure is a sort of sandwich plate made up of a viscoelastic core sandwiched between two elastic faces. The model is built by combining the first shear deformation theory with the Golla-Hughes-McTavish model that takes the frequency dependence of the viscoelastic material property into consideration. Due to the Golla-Hughes-McTavish model, the stiffness, damping and mass matrices are at least doubled, which requires a large amount of calculation. Then, a modified improved reduced system method is proposed to reduce the order of the model. Finally, the proposed reduced model is compared to the Guyan reduction, the mode truncation and the improved reduced system models by two numerical examples. It demonstrates that the proposed modified improved reduced system method is obviously superior to the other three classical methods and the presented passive constrained layer damping model with the Golla-Hughes-McTavish model is an effective and accurate sandwich model, which can be applied to the finite element software.


Sign in / Sign up

Export Citation Format

Share Document