Influence of quartz glass on silicon wafers during thermal processing

1994 ◽  
Author(s):  
Dietmar Hellmann ◽  
Thomas Falter ◽  
Rudolf Berger ◽  
Edmund Burte
2019 ◽  
Vol 8 (1) ◽  
pp. P35-P40 ◽  
Author(s):  
Haruo Sudo ◽  
Kozo Nakamura ◽  
Susumu Maeda ◽  
Hideyuki Okamura ◽  
Koji Izunome ◽  
...  

2011 ◽  
Vol 178-179 ◽  
pp. 249-252 ◽  
Author(s):  
Xiang Yang Ma ◽  
Li Ming Fu ◽  
De Ren Yang

Oxygen precipitation (OP) behaviors were investigated for Czochralski (Cz) silicon wafers, which were coated with silicon nitride (SiNx) films or not, subjected to two-step anneal of 800C/4 h+1000°C/16 h following rapid thermal processing (RTP) at different temperatures ranging from 1150 to 1250C for 50 s. It was found that OP in the Cz silicon wafers coated with SiNx films was stronger in each case. This was because that nitrogen atoms diffused into bulk of Cz silicon wafer from the surface coated SiNx film during the high temperature RTP. Furthermore, it was proved that the RTP lamp irradiation facilitated the in-diffusion of nitrogen atoms, which was most likely due to that the ultraviolet light enhanced the breakage of silicon-nitrogen bonds.


2006 ◽  
Vol 35 (5) ◽  
pp. 877-891 ◽  
Author(s):  
M. Rabus ◽  
A. T. Fiory ◽  
N. M. Ravindra ◽  
P. Frisella ◽  
A. Agarwal ◽  
...  

Doklady BGUIR ◽  
2020 ◽  
Vol 18 (7) ◽  
pp. 79-86
Author(s):  
J. A. Solovjov ◽  
V. A. Pilipenko ◽  
V. P. Yakovlev

The present work is devoted to determination of the dependence of the heating temperature of the silicon wafer on the lamps power and the heating time during rapid thermal processing using “UBTO 1801” unit by irradiating the wafer backside with an incoherent flow of constant density light. As a result, a mathematical model of silicon wafer temperature variation was developed on the basis of the equation of nonstationary thermal conductivity and known temperature dependencies of the thermophysical properties of silicon and the emissivity of aluminum and silver applied to the planar surface of the silicon wafer. For experimental determination of the numerical parameters of the mathematical model, silicon wafers were heated with light single pulse of constant power to the temperature of one of three phase transitions such as aluminum-silicon eutectic formation, aluminum melting and silver melting. The time of phase transition formation on the wafer surface during rapid thermal processing was fixed by pyrometric method. In accordance with the developed mathematical model, we determined the conversion coefficient of the lamps electric power to the light flux power density with the numerical value of 5.16∙10-3 cm-2 . Increasing the lamps power from 690 to 2740 W leads to an increase in the silicon wafer temperature during rapid thermal processing from 550°to 930°K, respectively. With that, the wafer temperature prediction error in compliance with developed mathematical model makes less than 2.3 %. The work results can be used when developing new procedures of rapid thermal processing for silicon wafers.


1998 ◽  
Vol 525 ◽  
Author(s):  
Dan Klimek ◽  
Brian Anthonyt ◽  
Agostino Abbate ◽  
Petros Kotidis

ABSTRACTResults are presented that demonstrate the use of laser ultrasonic methods to determine the temperature of silicon wafers under conditions consistent with applications in the RTP industry. The results show that it is possible to measure the temperature of Si(100) wafers to an accuracy approaching ± 1°C (1σ) even with wafer thickness variation over a range of 2 to 3 percent.


2010 ◽  
Vol 49 (8) ◽  
pp. 080205 ◽  
Author(s):  
Koji Araki ◽  
Haruo Sudo ◽  
Tatsuhiko Aoki ◽  
Takeshi Senda ◽  
Hiromichi Isogai ◽  
...  

2015 ◽  
Vol 242 ◽  
pp. 218-223
Author(s):  
Peng Dong ◽  
Xing Bo Liang ◽  
Da Xi Tian ◽  
Xiang Yang Ma ◽  
De Ren Yang

We report a strategy feasible for improving the internal gettering (IG) capability of iron (Fe) for n/n+ epitaxial silicon wafers using the heavily arsenic (As)-doped Czochralski (CZ) silicon wafers as the substrates. The n/n+ epitaxial silicon wafers were subjected to the two-step anneal of 650 °C/16 h + 1000 °C/16 h following the rapid thermal processing (RTP) at 1250 °C in argon (Ar) or nitrogen (N2) atmosphere. It is found that the prior RTP in N2 atmosphere exhibits much stronger enhancement effect on oxygen precipitation (OP) in the substrates than that in Ar atmosphere, thereby leading to a better IG capability of Fe contamination on the epitaxial wafer. In comparison with the RTP in Ar atmosphere, the one in N2 atmosphere injects not only vacancies but also nitrogen atoms of high concentration into the heavily As-doped silicon substrate. The co-action of vacancy and nitrogen leads to the enhanced OP in the substrate and therefore the better IG capability for the n/n+ epitaxial silicon wafer.


2002 ◽  
Vol 41 (Part 1, No. 7A) ◽  
pp. 4442-4449 ◽  
Author(s):  
Woo Sik Yoo ◽  
Takashi Fukada ◽  
Ichiro Yokoyama ◽  
Kitaek Kang ◽  
Nobuaki Takahashi

Sign in / Sign up

Export Citation Format

Share Document