Preparation and characterization of A-site doped Perovskite-type manganese oxides

2013 ◽  
Author(s):  
Yingqun Huang ◽  
Xiong Li ◽  
Xinglai Che ◽  
Hailang Ju
2009 ◽  
Vol 11 (5) ◽  
pp. 1016-1022 ◽  
Author(s):  
C. Ostos ◽  
L. Mestres ◽  
M.L. Martínez-Sarrión ◽  
J.E. García ◽  
A. Albareda ◽  
...  

Fuels ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 31-43
Author(s):  
Thomas Ruh ◽  
Richard Buchinger ◽  
Lorenz Lindenthal ◽  
Florian Schrenk ◽  
Christoph Rameshan

Catalytic tests to assess the performance of mixed perovskite-type oxides (La0.9Ca0.1FeO3-δ, La0.6Ca0.4FeO3-δ, Nd0.9Ca0.1FeO3-δ, Nd0.6Ca0.4FeO3-δ, Nd0.6Ca0.4Fe0.9Co0.1O3-δ, Nd0.6Ca0.4Fe0.97Ni0.03O3-δ, and LSF) with respect to CO oxidation are presented as well as characterization of the materials by XRD and SEM. Perovskites are a highly versatile class of materials due to their flexible composition and their ability to incorporate dopants easily. CO oxidation is a widely used “probe reaction” for heterogeneous catalysts. In this study, it is demonstrated how tuning the composition of the catalyst material (choice of A-site cation, A-site and B-site doping) greatly influences the activity. Changing the A-site cation to Nd3+ or increasing the concentration of Ca2+ as A-site dopant improves the performance of the catalyst. Additional B-site doping (e.g., Co) affects the performance as well—in the case of Co-doping by shifting ignition temperature to lower temperatures. Thus, perovskites offer an interesting approach to intelligent catalyst design and tuning the specific properties towards desired applications.


Author(s):  
Akito Kawai ◽  
Masahiro Suzuki ◽  
Kentaro Tsukamoto ◽  
Yusuke Minato ◽  
Yohei Doi

Post-translational methylation of the A site of 16S rRNA at position A1408 leads to pan-aminoglycoside resistance encompassing both 4,5- and 4,6-disubstituted 2-deoxystreptamine (DOS) aminoglycosides. To date, NpmA is the only acquired enzyme with such function. Here, we present function and structure of NpmB1 whose sequence was identified in Escherichia coli genomes registered from the United Kingdom. NpmB1 possesses 40% amino acid identity with NpmA1 and confers resistance to all clinically relevant aminoglycosides including 4,5-DOS agents. Phylogenetic analysis of NpmB1 and NpmB2, its single amino acid variant, revealed that the encoding gene was likely acquired by E. coli from a soil bacterium. The structure of NpmB1 suggests that it requires a structural change of the β6/7 linker in order to bind to 16S rRNA. These findings establish NpmB1 and NpmB2 as the second group of acquired pan-aminoglycoside resistance 16S rRNA methyltransferases.


2013 ◽  
Vol 32 ◽  
pp. 164-174 ◽  
Author(s):  
Marco Petitta ◽  
Eva Pacioni ◽  
Chiara Sbarbati ◽  
Gianni Corvatta ◽  
Marco Fanelli ◽  
...  

2017 ◽  
Vol 31 (02) ◽  
pp. 1750006 ◽  
Author(s):  
Mohammad Hossein Ghorbani ◽  
Abdol Mahmood Davarpanah

Manganese oxides are of more interest to researchers because of their ability as catalysts and lithium batteries. In this research, MnO2nanowires with diameter about 45 nm were synthesized by sol–gel method at room temperature (RT). Effect of increasing the annealing temperature from 400[Formula: see text]C to 600[Formula: see text]C on crystalline structure of nanostructure were studied and average crystallite size was estimated about 22 nm. X-ray Diffraction (XRD) method, Energy-Dispersive X-ray Diffraction (EDXD), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) were used to characterize the nanowires of MnO2.


2014 ◽  
Vol 25 (12) ◽  
pp. 5282-5287
Author(s):  
Muhammad Saleem ◽  
Yaseen Iqbal ◽  
Shan Qin ◽  
Xiang Wu ◽  
Shahid Ali ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document