GPU-based rectification of high-resolution remote sensing stereo images

2014 ◽  
Author(s):  
Niko Lukač ◽  
Borut Žalik
2021 ◽  
Vol 13 (24) ◽  
pp. 5050
Author(s):  
Sheng He ◽  
Ruqin Zhou ◽  
Shenhong Li ◽  
San Jiang ◽  
Wanshou Jiang

As an essential task in remote sensing, disparity estimation of high-resolution stereo images is still confronted with intractable problems due to extremely complex scenes and dynamically changing disparities. Especially in areas containing texture-less regions, repetitive patterns, disparity discontinuities, and occlusions, stereo matching is difficult. Recently, convolutional neural networks have provided a new paradigm for disparity estimation, but it is difficult for current models to consider both accuracy and speed. This paper proposes a novel end-to-end network to overcome the aforementioned obstacles. The proposed network learns stereo matching at dual scales, in which the low one captures coarse-grained information while the high one captures fine-grained information, helpful for matching structures of different scales. Moreiver, we construct cost volumes from negative to positive values to make the network work well for both negative and nonnegative disparities since the disparity varies dramatically in remote sensing stereo images. A 3D encoder-decoder module formed by factorized 3D convolutions is introduced to adaptively learn cost aggregation, which is of high efficiency and able to alleviate the edge-fattening issue at disparity discontinuities and approximate the matching of occlusions. Besides, we use a refinement module that brings in shallow features as guidance to attain high-quality full-resolution disparity maps. The proposed network is compared with several typical models. Experimental results on a challenging dataset demonstrate that our network shows powerful learning and generalization abilities. It achieves convincing performance on both accuracy and efficiency, and improvements of stereo matching in these challenging areas are noteworthy.


2002 ◽  
Vol 8 (1) ◽  
pp. 15-22
Author(s):  
V.N. Astapenko ◽  
◽  
Ye.I. Bushuev ◽  
V.P. Zubko ◽  
V.I. Ivanov ◽  
...  

The concept of exposome has received increasing discussion, including the recent Special Issue of Science –"Chemistry for Tomorrow's Earth,” about the feasibility of using high-resolution mass spectrometry to measure exposome in the body, and tracking the chemicals in the environment and assess their biological effect. We discuss the challenges of measuring and interpreting the exposome and suggest the survey on the life course history, built and ecological environment to characterize the sample of study, and in combination with remote sensing. They should be part of exposomics and provide insights into the study of exposome and health.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 135-144 ◽  
Author(s):  
C. Deguchi ◽  
S. Sugio

This study aims to evaluate the applicability of satellite imagery in estimating the percentage of impervious area in urbanized areas. Two methods of estimation are proposed and applied to a small urbanized watershed in Japan. The area is considered under two different cases of subdivision; i.e., 14 zones and 17 zones. The satellite imageries of LANDSAT-MSS (Multi-Spectral Scanner) in 1984, MOS-MESSR(Multi-spectral Electronic Self-Scanning Radiometer) in 1988 and SPOT-HRV(High Resolution Visible) in 1988 are classified. The percentage of imperviousness in 17 zones is estimated by using these classification results. These values are compared with the ones obtained from the aerial photographs. The percent imperviousness derived from the imagery agrees well with those derived from aerial photographs. The estimation errors evaluated are less than 10%, the same as those obtained from aerial photographs.


Author(s):  
John L. Schroeder

This article reviews the techniques and approaches historically employed to measure non-synoptic wind storms. While most of these efforts have originated from the atmospheric science community, the focus of this article relates to meeting the requirements of the engineering community. While the recognition of the importance of these non-synoptic wind system events is increasing, their engineering-relevant characteristics are still largely unknown. While gaps in knowledge concerning the engineering-relevant aspects of non-synoptic wind systems are plentiful, focused application of high-resolution research instrumentation offers hope to remove many of these unknowns. Future engineering-oriented measurement campaigns will likely make use of both traditional anemometry and remote sensing technologies to document the characteristics of non-synoptic wind systems.


Sign in / Sign up

Export Citation Format

Share Document