Passive vibration reduction of advanced composite pretwisted plates using integral damping materials

1995 ◽  
Author(s):  
John B. Kosmatka ◽  
Alex J. Lapid ◽  
Oral Mehmed
2021 ◽  
Vol 315 ◽  
pp. 43-49
Author(s):  
Si Bin Zhang ◽  
Ze Chao Jiang ◽  
Qing Chao Tian

Vibration systems require the damping materials operating at high service temperature. In this paper, damping performance of HT100, M2052 and S316L at 350K were evaluated by applying different frequencies, strain amplitudes and heating rates. It is found that the internal friction dependence of frequency of HT100, M2052 and S316L all show a characteristic of Check function, and the resonance frequency has a negative linear correlation with the material physical parameters. The strain amplitude as well as heating rate has no obvious effect on the resonance frequencies of the materials, but significantly enhance the internal friction of the interface damping alloys such as M2052 and HT100, but small on single-phase alloys such as S316L. The internal friction mechanism for HT100 and M2052 are of static hysteresis at 350K, and HT100 and M2052 are applicable candidates for working at temperatures around 350K from the viewpoint of vibration reduction.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wangqiang Xiao ◽  
Zhanhao Xu ◽  
Sheng Wang ◽  
Shaowei Yu ◽  
Kai Qin ◽  
...  

High-power gears are widely used in various engineering fields. The gear transmission system is an extremely complex elastic system, which produces complex vibration under internal and external excitation. For the vibration and noise problems caused by transmission error, a discrete element and finite coupling method based on the particle filling rate is proposed. Firstly, the gear dynamic model was established, and the particle damper was installed in the gear to reduce the vibration of the gear. Secondly, through the coupling process, the contact force and contact position between the noncontinuous medium and the continuous medium were correctly transferred to the corresponding nodes of the finite element analysis model. Then, the equivalent displacement mapping of the contact loads’ node of the gear was realized, and the transformation of the local coordinate to the global coordinate was carried out. Finally, by combining theoretical analysis with experimental verification, the influence of the filling rate of damping particles on the vibration reduction effect of the gearbox under different working conditions was studied. The 2 mm tungsten particles were selected, and the particle damper had the best damping effect when the filling rate was 88%.


2012 ◽  
Vol 532-533 ◽  
pp. 220-223
Author(s):  
Zi Qiang Sun ◽  
Chang Zheng Chen ◽  
Huang Liu

Spring vibration isolators and rubber damping vibration isolators are often used in active isolation engineering of water source heat pump units. The method is inefficient in shock and low frequency vibration isolation. Because the stiffness of equipments reduces with the isolation system the vibration severity itself becomes too big for working safely. Particle damping materials can absorb vibration energy to reduce vibration. The paper testifies that successful application of particle damping materials in vibration reduction of water source heat pump units is a practical simple way with low cost.


Sign in / Sign up

Export Citation Format

Share Document