High resolution three-dimensional robotic synthetic tracked aperture ultrasound imaging: feasibility study

Author(s):  
Haichong K. Zhang ◽  
Ting Yun Fang ◽  
Rodolfo Finocchi ◽  
Emad M. Boctor
2012 ◽  
Vol 38 (10) ◽  
pp. 1833-1838 ◽  
Author(s):  
Kazutoshi Kumagai ◽  
Hideyuki Koike ◽  
Ryo Nagaoka ◽  
Shingo Sakai ◽  
Kazuto Kobayashi ◽  
...  

2012 ◽  
Vol 18 (12) ◽  
pp. 935-946 ◽  
Author(s):  
Madhu Gudur ◽  
Rameshwar R. Rao ◽  
Yi-Sing Hsiao ◽  
Alexis W. Peterson ◽  
Cheri X. Deng ◽  
...  

Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
Kenneth H. Downing ◽  
Hu Meisheng ◽  
Hans-Rudolf Went ◽  
Michael A. O'Keefe

With current advances in electron microscope design, high resolution electron microscopy has become routine, and point resolutions of better than 2Å have been obtained in images of many inorganic crystals. Although this resolution is sufficient to resolve interatomic spacings, interpretation generally requires comparison of experimental images with calculations. Since the images are two-dimensional representations of projections of the full three-dimensional structure, information is invariably lost in the overlapping images of atoms at various heights. The technique of electron crystallography, in which information from several views of a crystal is combined, has been developed to obtain three-dimensional information on proteins. The resolution in images of proteins is severely limited by effects of radiation damage. In principle, atomic-resolution, 3D reconstructions should be obtainable from specimens that are resistant to damage. The most serious problem would appear to be in obtaining high-resolution images from areas that are thin enough that dynamical scattering effects can be ignored.


Sign in / Sign up

Export Citation Format

Share Document