Cross spectral, active and passive approach to face recognition for improved performance

Author(s):  
Marcin Kowalski ◽  
Artur Grudzien ◽  
Mieczyslaw Szustakowski



Author(s):  
Shuo Chen ◽  
Chengjun Liu

Eye detection is an important initial step in an automatic face recognition system. Though numerous eye detection methods have been proposed, many problems still exist, especially in the detection accuracy and efficiency under challenging image conditions. The authors present a novel eye detection method using color information, Haar features, and a new efficient Support Vector Machine (eSVM) in this chapter . In particular, this eye detection method consists of two stages: the eye candidate selection and validation. The selection stage picks up eye candidates over an image through color information, while the validation stage applies 2D Haar wavelet and the eSVM to detect the center of the eye among these candidates. The eSVM is defined on fewer support vectors than the standard SVM, which can achieve faster detection speed and higher or comparable detection accuracy. Experiments on Face Recognition Grand Challenge (FRGC) database show the improved performance over existing methods on both efficiency and accuracy.



2018 ◽  
Vol 115 (44) ◽  
pp. 11333-11338 ◽  
Author(s):  
Lukas Vogelsang ◽  
Sharon Gilad-Gutnick ◽  
Evan Ehrenberg ◽  
Albert Yonas ◽  
Sidney Diamond ◽  
...  

Children who are treated for congenital cataracts later exhibit impairments in configural face analysis. This has been explained in terms of a critical period for the acquisition of normal face processing. Here, we consider a more parsimonious account according to which deficits in configural analysis result from the abnormally high initial retinal acuity that children treated for cataracts experience, relative to typical newborns. According to this proposal, the initial period of low retinal acuity characteristic of normal visual development induces extended spatial processing in the cortex that is important for configural face judgments. As a computational test of this hypothesis, we examined the effects of training with high-resolution or blurred images, and staged combinations, on the receptive fields and performance of a convolutional neural network. The results show that commencing training with blurred images creates receptive fields that integrate information across larger image areas and leads to improved performance and better generalization across a range of resolutions. These findings offer an explanation for the observed face recognition impairments after late treatment of congenital blindness, suggest an adaptive function for the acuity trajectory in normal development, and provide a scheme for improving the performance of computational face recognition systems.



2021 ◽  
Vol 4 ◽  
Author(s):  
Tejas I. Dhamecha ◽  
Soumyadeep Ghosh ◽  
Mayank Vatsa ◽  
Richa Singh

Cross-view or heterogeneous face matching involves comparing two different views of the face modality such as two different spectrums or resolutions. In this research, we present two heterogeneity-aware subspace techniques, heterogeneous discriminant analysis (HDA) and its kernel version (KHDA) that encode heterogeneity in the objective function and yield a suitable projection space for improved performance. They can be applied on any feature to make it heterogeneity invariant. We next propose a face recognition framework that uses existing facial features along with HDA/KHDA for matching. The effectiveness of HDA and KHDA is demonstrated using both handcrafted and learned representations on three challenging heterogeneous cross-view face recognition scenarios: (i) visible to near-infrared matching, (ii) cross-resolution matching, and (iii) digital photo to composite sketch matching. It is observed that, consistently in all the case studies, HDA and KHDA help to reduce the heterogeneity variance, clearly evidenced in the improved results. Comparison with recent heterogeneous matching algorithms shows that HDA- and KHDA-based matching yields state-of-the-art or comparable results on all three case studies. The proposed algorithms yield the best rank-1 accuracy of 99.4% on the CASIA NIR-VIS 2.0 database, up to 100% on the CMU Multi-PIE for different resolutions, and 95.2% rank-10 accuracies on the e-PRIP database for digital to composite sketch matching.



Author(s):  
Gertrude. F. Rempfer

Optimum performance in electron and ion imaging instruments, such as electron microscopes and probe-forming instruments, in most cases depends on a compromise either between imaging errors due to spherical and chromatic aberrations and the diffraction error or between the imaging errors and the current in the image. These compromises result in the use of very small angular apertures. Reducing the spherical and chromatic aberration coefficients would permit the use of larger apertures with resulting improved performance, granted that other problems such as incorrect operation of the instrument or spurious disturbances do not interfere. One approach to correcting aberrations which has been investigated extensively is through the use of multipole electric and magnetic fields. Another approach involves the use of foil windows. However, a practical system for correcting spherical and chromatic aberration is not yet available.Our approach to correction of spherical and chromatic aberration makes use of an electrostatic electron mirror. Early studies of the properties of electron mirrors were done by Recknagel. More recently my colleagues and I have studied the properties of the hyperbolic electron mirror as a function of the ratio of accelerating voltage to mirror voltage. The spherical and chromatic aberration coefficients of the mirror are of opposite sign (overcorrected) from those of electron lenses (undercorrected). This important property invites one to find a way to incorporate a correcting mirror in an electron microscope. Unfortunately, the parts of the beam heading toward and away from the mirror must be separated. A transverse magnetic field can separate the beams, but in general the deflection aberrations degrade the image. The key to avoiding the detrimental effects of deflection aberrations is to have deflections take place at image planes. Our separating system is shown in Fig. 1. Deflections take place at the separating magnet and also at two additional magnetic deflectors. The uncorrected magnified image formed by the objective lens is focused in the first deflector, and relay lenses transfer the image to the separating magnet. The interface lens and the hyperbolic mirror acting in zoom fashion return the corrected image to the separating magnet, and the second set of relay lenses transfers the image to the final deflector, where the beam is deflected onto the projection axis.



2010 ◽  
Vol 69 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Jisien Yang ◽  
Adrian Schwaninger

Configural processing has been considered the major contributor to the face inversion effect (FIE) in face recognition. However, most researchers have only obtained the FIE with one specific ratio of configural alteration. It remains unclear whether the ratio of configural alteration itself can mediate the occurrence of the FIE. We aimed to clarify this issue by manipulating the configural information parametrically using six different ratios, ranging from 4% to 24%. Participants were asked to judge whether a pair of faces were entirely identical or different. The paired faces that were to be compared were presented either simultaneously (Experiment 1) or sequentially (Experiment 2). Both experiments revealed that the FIE was observed only when the ratio of configural alteration was in the intermediate range. These results indicate that even though the FIE has been frequently adopted as an index to examine the underlying mechanism of face processing, the emergence of the FIE is not robust with any configural alteration but dependent on the ratio of configural alteration.



Author(s):  
Chrisanthi Nega

Abstract. Four experiments were conducted investigating the effect of size congruency on facial recognition memory, measured by remember, know and guess responses. Different study times were employed, that is extremely short (300 and 700 ms), short (1,000 ms), and long times (5,000 ms). With the short study time (1,000 ms) size congruency occurred in knowing. With the long study time the effect of size congruency occurred in remembering. These results support the distinctiveness/fluency account of remembering and knowing as well as the memory systems account, since the size congruency effect that occurred in knowing under conditions that facilitated perceptual fluency also occurred independently in remembering under conditions that facilitated elaborative encoding. They do not support the idea that remember and know responses reflect differences in trace strength.



1993 ◽  
Vol 38 (1) ◽  
pp. 63-66
Author(s):  
James C. Bartlett




Sign in / Sign up

Export Citation Format

Share Document