Detection and identification of chemical warfare agents using mid wave infrared active hyperspectral imaging

Author(s):  
Keith Ruxton ◽  
Robin Head ◽  
Rhea J. Clewes ◽  
Nils Hempler ◽  
Graeme P. A. Malcolm ◽  
...  
2002 ◽  
Vol 74 (12) ◽  
pp. 2281-2291 ◽  
Author(s):  
H. H. Hill ◽  
S. J. Martin

Analytical methods that are currently used for the detection and identification of chemical warfare agents are reviewed and classified by the number of dimensions of information they provide. Single dimensional sensors target specific compounds or classes of compounds. Although they can be less expensive and more portable than multidimensional sensors, multidimensional sensors detect a broader threat spectrum with greater precision and accuracy. The recommendation for analytical field verification during inspections under the Chemical Weapons Convention (CWC) is to use simple two-dimensional analytical methods, such as gas chromatography (GC) or ion mobility spectrometry (IMS), for on-site screening of chemical weapons (CW) agents or to fully equip a modern, mobile analytical laboratory located in an airplane, which can be moved rapidly throughout the world to each inspection site and provide high-quality analytical data on-site.


2008 ◽  
Vol 18 (01) ◽  
pp. 63-70
Author(s):  
IGOR PASTIRK ◽  
MARCOS DANTUS

Detection and identification of chemical warfare simulants based on multidimensional phase shaped femtosecond laser pulses coupled to mass spectrometry (MS) is demonstrated. The presented approach is based on binary phase shaping (BPS) and aims to improve the accuracy and precision required for security applications. It is based on multiphoton intrapulse interference of femtosecond laser pulses. Spectra retrieved by applying n-differently shaped pulses represent n-dimensions of the analysis. We present a multidimensional technique for detection and identification of analogues to chemical agents and mixtures in real-time. Experimental results for dimethyl phosphate, pyridine, and three isomers of nitrotoluene are presented.


2013 ◽  
Author(s):  
Rhea J. Clewes ◽  
Chris R. Howle ◽  
Jason Guicheteau ◽  
Darren Emge ◽  
Keith Ruxton ◽  
...  

2018 ◽  
Vol 90 (10) ◽  
pp. 1615-1624 ◽  
Author(s):  
Matheus Thomas Kuska ◽  
Jan Behmann ◽  
Anne-Katrin Mahlein

AbstractThe OPCW Member states cover 98% of the global population and landmass. Regrettably, unanticipated chemical warfare agent assaults are reported during the last decades. In addition to the frequent threat situation, the sampling of bio-medical samples from these areas is critical and mainly depends on investigation opportunities of victims. Non-contact sensor technologies are desirable to enable a fast and secure estimation of a situation. Plants react on pollution because of their direct interaction with gases and it is assumed that chemical warfare agents influence plants, respectively. This impact can be analyzed for the detection and characterization of chemical warfare assaults. Nowadays technological progress in digital technologies provides new innovations in detectors, data analysis approaches and software availability which could improve the screening, monitoring and analysis of chemical warfare. Within this context hyperspectral imaging (HSI) is a promising method. Different applications from remote to close range sensing in medicine, food production, military, geography and agriculture do exist already. During the last years HSI showed high potential to determine and assess different plant parameters, e.g. abiotic and biotic stresses by recording the spectral reflectance of plants. Within the present manuscript, the basics principle of HSI as an innovative technique, aspects of recording and analyzing HSI data is presented using wild growing apple leaves which are treated with sulfuric acid, fire or heat. Resulting spectral signatures showed significant changes among the treatments. Especially the shortwave infrared was sensitive to changes due to the different treatments. Furthermore, the calculation of common spectral indices revealed differences due to the treatments which are not visible to the human eye. The results support HSI applications for the detection of chemical warfare agents and elucidate the impact of chemical warfare on plants.


2006 ◽  
Vol 37 (S 1) ◽  
Author(s):  
N Iwasaki ◽  
S Miyamoto ◽  
K Ishii ◽  
T Takeda ◽  
T Ohto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document