Temperature-dependent optical and electrical properties of ZnO thin films for energy applications (Conference Presentation)

Author(s):  
Na (Luna) Lu ◽  
Yang Wang ◽  
Ian Ferguson
2021 ◽  
Vol 902 ◽  
pp. 65-70
Author(s):  
Samar Aboulhadeed ◽  
Mohsen Ghali ◽  
Mohamad M. Ayad

We report on a development of the structural, optical and electrical properties of poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) conducting polymer thin films. The PEDOT:PSS thin films were deposited by a controlled thin film applicator and their physical properties were found to be effectively modified by isopropanol. The deposited films were investigated by several techniques including XRD, UV–Vis, SPM and Hall-effect. Interestingly, by optimizing the PEDOTS:PSS/ISO volume ratio (v:v), we find that the film charge carriers type can be switched from p to n-type with a high bulk carriers concentration reaching 6×1017 cm-3. Moreover, the film surface roughness becomes smoother and reaching a small value of only 1.9 nm. Such development of the PEDOT:PSS film properties makes it very promising to act as an electron transport layer for different energy applications.


2014 ◽  
Vol 29 (5) ◽  
pp. 275-280 ◽  
Author(s):  
P. J. Cao ◽  
W. J. Liu ◽  
F. Jia ◽  
Y. X. Zeng ◽  
D. L. Zhu ◽  
...  

2018 ◽  
Vol 5 (3) ◽  
pp. 9519-9524 ◽  
Author(s):  
Worapot Sripianem ◽  
Alichapat Chuchuay ◽  
Pitcha Kiatthanabumrung ◽  
Natthida Saengow ◽  
Thanate Na Wichean ◽  
...  

2021 ◽  
Author(s):  
Chunhu Zhao ◽  
Junfeng Liu ◽  
Yixin Guo ◽  
Yanlin Pan ◽  
Xiaobo Hu ◽  
...  

Abstract Aluminum doped ZnO thin films (AZO), which simultaneously transmit light and conduct electrical current, are widely applied in photovoltaic devices. To achieve high performance AZO thin films, the effects of RF magnetron sputtering conditions on the optical and electrical properties of the films has been explored. The optimized AZO thin films exhibit strong (002) orientated growth with hexagonal wurtzite structure. The minimum resistivity of 0.9Í10-3 Ω·cm, the highest carrier concentration of 2.8Í1020 cm-3, the best Hall mobility of 22.8 cm2·(V·s)-1 and average transmittance above 85% can be achieved at the optimum deposition condition of 0.2 Pa, 120 W and 200 °C. Considering the single parabolic band model, the bandgap shift by carrier concentration of the films can be attributed to the Burstein-Moss effect. The results indicate that RF magnetron sputtered AZO thin films are promising for solar cell applications relying on front contact layers.


Sign in / Sign up

Export Citation Format

Share Document