The optimization of optical system with liquid lenses via hybrid algorithm

Author(s):  
Zhengda Li ◽  
Haibin Sun ◽  
Yejin Li ◽  
Jinhong Wei ◽  
Jin Zeng ◽  
...  
Optik ◽  
2016 ◽  
Vol 127 (3) ◽  
pp. 985-990 ◽  
Author(s):  
D. Yue ◽  
S.Y. Xu ◽  
H.T. Nie ◽  
B.Q. Xu ◽  
Z.Y. Wang

2019 ◽  
Vol 6 (1) ◽  
pp. 134-140
Author(s):  
Alexey Voytov ◽  
Igor Mikhailov

The article considers the relevance of the use of liquid lenses in variable lenses for photo-video equipment unmanned aerial vehicles. The above mentioned factors that reduce the operational performance of existing variable lenses with mechanical systems control the angular field of the optical system. The prospects of using liquid lenses as an alternative to mechanical systems of changing the angular field of the lens are named. The possibility of development of a monoblock of a zoom lens having movable elements with improved mass-dimensional and thermal pressure characteristics.


Micromachines ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 464 ◽  
Author(s):  
Kari L. Van Grinsven ◽  
Alireza Ousati Ashtiani ◽  
Hongrui Jiang

We have fabricated a fully-flexible, focus-tunable microlens array on a sheet and demonstrated its imaging capabilities. Each liquid lens of the array is individually tunable via electrowetting on dielectric (EWOD) actuation and is situated on a polydimethylsiloxane (PDMS) substrate, which allows the lens array to operate as a reconfigurable optical system. In particular, we observed a significant increase in the field of view (FOV) of the system to 40.4° by wrapping it on a cylindrical surface as compared to the FOV of 21.5° obtained by the array on a planer surface. We also characterized the liquid lenses of the system, observing a range of focus length from 20.2 mm to 9.2 mm as increased voltage was applied to each EWOD lens. A Shack–Hartmann wavefront sensor (SHWS) was used to measure the wavefront of the lens as it was actuated, and the aberrations of the lens were assessed by reporting the Zernike coefficients of the wavefronts.


Author(s):  
Michel Troyonal ◽  
Huei Pei Kuoal ◽  
Benjamin M. Siegelal

A field emission system for our experimental ultra high vacuum electron microscope has been designed, constructed and tested. The electron optical system is based on the prototype whose performance has already been reported. A cross-sectional schematic illustrating the field emission source, preaccelerator lens and accelerator is given in Fig. 1. This field emission system is designed to be used with an electron microscope operated at 100-150kV in the conventional transmission mode. The electron optical system used to control the imaging of the field emission beam on the specimen consists of a weak condenser lens and the pre-field of a strong objective lens. The pre-accelerator lens is an einzel lens and is operated together with the accelerator in the constant angular magnification mode (CAM).


Author(s):  
B. Roy Frieden

Despite the skill and determination of electro-optical system designers, the images acquired using their best designs often suffer from blur and noise. The aim of an “image enhancer” such as myself is to improve these poor images, usually by digital means, such that they better resemble the true, “optical object,” input to the system. This problem is notoriously “ill-posed,” i.e. any direct approach at inversion of the image data suffers strongly from the presence of even a small amount of noise in the data. In fact, the fluctuations engendered in neighboring output values tend to be strongly negative-correlated, so that the output spatially oscillates up and down, with large amplitude, about the true object. What can be done about this situation? As we shall see, various concepts taken from statistical communication theory have proven to be of real use in attacking this problem. We offer below a brief summary of these concepts.


Author(s):  
J T Fourie

The attempts at improvement of electron optical systems to date, have largely been directed towards the design aspect of magnetic lenses and towards the establishment of ideal lens combinations. In the present work the emphasis has been placed on the utilization of a unique three-dimensional crystal objective aperture within a standard electron optical system with the aim to reduce the spherical aberration without introducing diffraction effects. A brief summary of this work together with a description of results obtained recently, will be given.The concept of utilizing a crystal as aperture in an electron optical system was introduced by Fourie who employed a {111} crystal foil as a collector aperture, by mounting the sample directly on top of the foil and in intimate contact with the foil. In the present work the sample was mounted on the bottom of the foil so that the crystal would function as an objective or probe forming aperture. The transmission function of such a crystal aperture depends on the thickness, t, and the orientation of the foil. The expression for calculating the transmission function was derived by Hashimoto, Howie and Whelan on the basis of the electron equivalent of the Borrmann anomalous absorption effect in crystals. In Fig. 1 the functions for a g220 diffraction vector and t = 0.53 and 1.0 μm are shown. Here n= Θ‒ΘB, where Θ is the angle between the incident ray and the (hkl) planes, and ΘB is the Bragg angle.


Author(s):  
Fumio Watari ◽  
J. M. Cowley

STEM coupled with the optical system was used for the investigation of the early oxidation on the surface of Cr. Cr thin films (30 – 1000Å) were prepared by evaporation onto the polished or air-cleaved NaCl substrates at room temperature and 45°C in a vacuum of 10−6 Torr with an evaporation speed 0.3Å/sec. Rather thick specimens (200 – 1000Å) with various preferred orientations were used for the investigation of the oxidation at moderately high temperature (600 − 1100°C). Selected area diffraction patterns in these specimens are usually very much complicated by the existence of the different kinds of oxides and their multiple twinning. The determination of the epitaxial orientation relationship of the oxides formed on the Cr surface was made possible by intensive use of the optical system and microdiffraction techniques. Prior to the formation of the known rhombohedral Cr2O3, a thin spinel oxide, probably analogous to γ -Al203 or γ -Fe203, was formed. Fig. 1a shows the distinct epitaxial growth of the spinel (001) as well as the rhombohedral (125) on the well-oriented Cr(001) surface. In the case of the Cr specimen with the (001) preferred orientation (Fig. 1b), the rings explainable by spinel structure appeared as well as the well defined epitaxial spots of the spinel (001). The microdif fraction from 20A areas (Fig. 2a) clearly shows the same pattern as Fig. Ia with the weaker oxide spots among the more intense Cr spots, indicating that the thickness of the oxide is much less than that of Cr. The rhombohedral Cr2O3 was nucleated preferably at the Cr(011) sites provided by the polycrystalline nature of the present specimens with the relation Cr2O3 (001)//Cr(011), and by further oxidation it grew into full coverage of the rest of the Cr surface with the orientation determined by the initial nucleation.


Sign in / Sign up

Export Citation Format

Share Document