Analysis of encoding aperture processing error for optical field modulation of compressed sampling spectrum imaging

Author(s):  
Mengjun Zhu ◽  
Xiaochun Wang ◽  
Junli Qi ◽  
Wusheng Tang ◽  
Meicheng Fu ◽  
...  
2021 ◽  
Vol 0 (0) ◽  
pp. 1-17
Author(s):  
LI Hao ◽  
◽  
◽  
HU De-jiao ◽  
QIN Fei ◽  
...  

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Yanan Ji ◽  
Wen Xu ◽  
Nan Ding ◽  
Haitao Yang ◽  
Hongwei Song ◽  
...  

Abstract Since selective detection of multiple narrow spectral bands in the near-infrared (NIR) region still poses a fundamental challenge, we have, in this work, developed NIR photodetectors (PDs) using photon upconversion nanocrystals (UCNCs) combined with perovskite films. To conquer the relatively high pumping threshold of UCNCs, we designed a novel cascade optical field modulation strategy to boost upconversion luminescence (UCL) by cascading the superlensing effect of dielectric microlens arrays and the plasmonic effect of gold nanorods, which readily leads to a UCL enhancement by more than four orders of magnitude under weak light irradiation. By accommodating multiple optically active lanthanide ions in a core-shell-shell hierarchical architecture, developed PDs on top of this structure can detect three well-separated narrow bands in the NIR region, i.e., those centered at 808, 980, and 1540 nm. Due to the large UCL enhancement, the obtained PDs demonstrate extremely high responsivities of 30.73, 23.15, and 12.20 A W−1 and detectivities of 5.36, 3.45, and 1.91 × 1011 Jones for 808, 980, and 1540 nm light detection, respectively, together with short response times in the range of 80–120 ms. Moreover, we demonstrate for the first time that the response to the excitation modulation frequency of a PD can be employed to discriminate the incident light wavelength. We believe that our work provides novel insight for developing NIR PDs and that it can spur the development of other applications using upconversion nanotechnology.


2012 ◽  
Vol 14 (1) ◽  
pp. 013012 ◽  
Author(s):  
Jiang-Tao Liu ◽  
Fu-Hai Su ◽  
Hai Wang ◽  
Xin-Hua Deng

Author(s):  
John A. Hunt

Spectrum-imaging is a useful technique for comparing different processing methods on very large data sets which are identical for each method. This paper is concerned with comparing methods of electron energy-loss spectroscopy (EELS) quantitative analysis on the Al-Li system. The spectrum-image analyzed here was obtained from an Al-10at%Li foil aged to produce δ' precipitates that can span the foil thickness. Two 1024 channel EELS spectra offset in energy by 1 eV were recorded and stored at each pixel in the 80x80 spectrum-image (25 Mbytes). An energy range of 39-89eV (20 channels/eV) are represented. During processing the spectra are either subtracted to create an artifact corrected difference spectrum, or the energy offset is numerically removed and the spectra are added to create a normal spectrum. The spectrum-images are processed into 2D floating-point images using methods and software described in [1].


Author(s):  
Gianluigi Botton ◽  
Gilles L'espérance

As interest for parallel EELS spectrum imaging grows in laboratories equipped with commercial spectrometers, different approaches were used in recent years by a few research groups in the development of the technique of spectrum imaging as reported in the literature. Either by controlling, with a personal computer both the microsope and the spectrometer or using more powerful workstations interfaced to conventional multichannel analysers with commercially available programs to control the microscope and the spectrometer, spectrum images can now be obtained. Work on the limits of the technique, in terms of the quantitative performance was reported, however, by the present author where a systematic study of artifacts detection limits, statistical errors as a function of desired spatial resolution and range of chemical elements to be studied in a map was carried out The aim of the present paper is to show an application of quantitative parallel EELS spectrum imaging where statistical analysis is performed at each pixel and interpretation is carried out using criteria established from the statistical analysis and variations in composition are analyzed with the help of information retreived from t/γ maps so that artifacts are avoided.


Author(s):  
K. Siangchaew ◽  
J. Bentley ◽  
M. Libera

Energy-filtered electron-spectroscopic TEM imaging provides a new way to study the microstructure of polymers without heavy-element stains. Since spectroscopic imaging exploits the signal generated directly by the electron-specimen interaction, it can produce richer and higher resolution data than possible with most staining methods. There are basically two ways to collect filtered images (fig. 1). Spectrum imaging uses a focused probe that is digitally rastered across a specimen with an entire energy-loss spectrum collected at each x-y pixel to produce a 3-D data set. Alternatively, filtering schemes such as the Zeiss Omega filter and the Gatan Imaging Filter (GIF) acquire individual 2-D images with electrons of a defined range of energy loss (δE) that typically is 5-20 eV.


2020 ◽  
Vol 8 (20) ◽  
pp. 6832-6838 ◽  
Author(s):  
Da Teng ◽  
Kai Wang ◽  
Qiongsha Huan ◽  
Weiguang Chen ◽  
Zhe Li

Tunable ultra-deep subwavelength optical field confinement is reported by using a graphene-coated nanowire-loaded silicon nano-rib waveguide.


Sign in / Sign up

Export Citation Format

Share Document