Study on infrared collimation heating technology in thermal vacuum tests

Author(s):  
Chao Fan ◽  
YanQiang Bi ◽  
Jing Wang ◽  
Ke Xu ◽  
JunWu Deng ◽  
...  
2013 ◽  
Vol 58 (3) ◽  
pp. 919-922 ◽  
Author(s):  
K. Granat ◽  
B. Opyd ◽  
D. Nowak ◽  
M. Stachowicz ◽  
G. Jaworski

Abstract The paper describes preliminary examinations on establishing usefulness criteria of foundry tooling materials in the microwave heating technology. Presented are measurement results of permittivity and loss tangent that determine behaviour of the materials in electromagnetic field. The measurements were carried-out in a waveguide resonant cavity that permits precise determination the above-mentioned parameters by perturbation technique. Examined were five different materials designed for use in foundry tooling. Determined was the loss factor that permits evaluating usefulness of materials in microwave heating technology. It was demonstrated that the selected plastics meet the basic criterion that is transparency for electromagnetic radiation.


2000 ◽  
Author(s):  
M. Marchesi ◽  
R. Campaci ◽  
A. Nista ◽  
W. Prendin ◽  
S. Scarpa ◽  
...  

Alloy Digest ◽  
2013 ◽  
Vol 62 (10) ◽  

Abstract NIKROTHAL TE is a member of the Nikrothal family of alloys, which are one of two main types of electric-resistance alloys. Nickel-chromium (80Ni-20Cr, for example), developed around the turn of the century, was used as heating-element material in industrial furnaces and electric household appliances. Nikrothal alloys offer advantages in heating-element applications requiring very good mechanical properties in the hot state. This alloy is an attractive alternative to Nikrothal Alloys 40, 60, 70, and 80 (see Alloy Digest Ni-529, September 1997). This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming. Filing Code: Ni-710. Producer or source: Sandvik Heating Technology.


2020 ◽  
Vol 39 (1) ◽  
pp. 45-53 ◽  
Author(s):  
Siwen Tang ◽  
Rui Wang ◽  
Pengfei Liu ◽  
Qiulin Niu ◽  
Guoqing Yang ◽  
...  

AbstractWith the concern of the environment, green dry cutting technology is getting more and more attention and self-lubricating tool technology plays an important role in dry cutting. Due to the demand for high temperature performance of tools during dry cutting process, cemented carbide with Ni3Al as the binder phase has received extensive attention due to its excellent high temperature strength and high temperature oxidation resistance. In this paper, WC-TiC-Ni3Al-CaF2 graded self-lubricating material and tools were prepared by microwave heating method, and its microstructure, mechanical properties and cutting performance were studied. Results show that gradient self-lubricating material can be quickly prepared by microwave heating technology, and the strength is equivalent to that of conventional heating technology. CaF2 not only plays a role in self-lubrication, but also refines the grain of the material. A reasonable gradient design can improve the mechanical properties of the material. When the gradient distribution exponent is n1 = 2, the material has high mechanical properties. Cutting experiments show that the WC-TiC-Ni3Al-CaF2 functional gradient self-lubricating tool has better cutting performance than the homogeneous WC-TiC-Ni3Al hard alloys.


2008 ◽  
Author(s):  
Shiro Ueno ◽  
Dmitry Khrustalev ◽  
Peter Cologer ◽  
Russ Snyder

Sign in / Sign up

Export Citation Format

Share Document