3D analysis of high-aspect ratio features in 3D-NAND

Author(s):  
Jens-Timo Neumann ◽  
Dmitry Klochkov ◽  
Thomas Korb ◽  
Sheetal B. Gupta ◽  
Amir Avishai ◽  
...  
Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1035 ◽  
Author(s):  
Alireza M. Kia ◽  
Nora Haufe ◽  
Sajjad Esmaeili ◽  
Clemens Mart ◽  
Mikko Utriainen ◽  
...  

For the analysis of thin films, with high aspect ratio (HAR) structures, time-of-flight secondary ion mass spectrometry (ToF-SIMS) overcomes several challenges in comparison to other frequently used techniques such as electron microscopy. The research presented herein focuses on two different kinds of HAR structures that represent different semiconductor technologies. In the first study, ToF-SIMS is used to illustrate cobalt seed layer corrosion by the copper electrolyte within the large through-silicon-vias (TSVs) before and after copper electroplating. However, due to the sample’s surface topography, ToF-SIMS analysis proved to be difficult due to the geometrical shadowing effects. Henceforth, in the second study, we introduce a new test platform to eliminate the difficulties with the HAR structures, and again, use ToF-SIMS for elemental analysis. We use data image slicing of 3D ToF-SIMS analysis combined with lateral HAR test chips (PillarHall™) to study the uniformity of silicon dopant concentration in atomic layer deposited (ALD) HfO2 thin films.


2018 ◽  
Author(s):  
Gen Hayase

By exploiting the dispersibility and rigidity of boehmite nanofibers (BNFs) with a high aspect ratio of 4 nm in diameter and several micrometers in length, multiwall-carbon nanotubes (MWCNTs) were successfully dispersed in aqueous solutions. In these sols, the MWCNTs were dispersed at a ratio of about 5–8% relative to BNFs. Self-standing BNF–nanotube films were also obtained by filtering these dispersions and showing their functionality. These films can be expected to be applied to sensing materials.


2019 ◽  
Author(s):  
Michael J. Strauss ◽  
Darya Asheghali ◽  
Austin Evans ◽  
Rebecca Li ◽  
Anton Chavez ◽  
...  

<p>Nanotubes assembled from macrocyclic precursors offer a unique combination of low dimensionality, structural rigidity, and distinct interior and exterior microenvironments. Usually the weak stacking energies of macrocycles limit the length or strength of the resultant nanotubes. Imine-linked macrocycles were recently found to assemble into high-aspect ratio (>10<sup>3</sup>), lyotropic nanotubes in the presence of excess acid. Yet these harsh conditions are incompatible with many functional groups and processing methods, and lower acid loadings instead catalyze macrocycle degradation. Here we report pyridine-2,6-diimine-linked macrocycles that assemble into high-aspect ratio nanotubes in the presence of less than 1 equiv of CF<sub>3</sub>CO<sub>2</sub>H per macrocycle. Analysis by gel permeation chromatography and fluorescence spectroscopy revealed a cooperative self-assembly mechanism. Nanofibers obtained by touch-spinning the pyridinium-based nanotubes exhibit Young’s moduli of 1.48 GPa, which exceeds that of many synthetic polymers and biological filaments. These findings will enable the design of structurally diverse nanotubes from synthetically accessible macrocycles. </p>


Sign in / Sign up

Export Citation Format

Share Document