Different approaches for Raman spectra multivariate analysis for monitoring x-rays exposed human neuroblastoma cells

Author(s):  
Ines Delfino ◽  
Valerio Ricciardi ◽  
Giuseppe Perna ◽  
Maria Lasalvia ◽  
Lorenzo Manti ◽  
...  
Sensors ◽  
2019 ◽  
Vol 19 (18) ◽  
pp. 3971 ◽  
Author(s):  
Ines Delfino ◽  
Valerio Ricciardi ◽  
Lorenzo Manti ◽  
Maria Lasalvia ◽  
Maria Lepore

Previous works showed that spatially resolved Raman spectra of cytoplasm and nucleus region of single cells exposed to X-rays evidence different features. The present work aims to introduce a new approach to profit from these differences to deeper investigate X-ray irradiation effects on single SH-SY5Y human neuroblastoma cells. For this aim, Raman micro-spectroscopy was performed in vitro on single cells after irradiation by graded X-ray doses (2, 4, 6, 8 Gy). Spectra from nucleus and cytoplasm regions were selectively acquired. The examination by interval Principal Component Analysis (i-PCA) of the difference spectra obtained by subtracting each cytoplasm-related spectrum from the corresponding one detected at the nucleus enabled us to reveal the subtle modifications of Raman features specific of different spatial cell regions. They were discussed in terms of effects induced by X-ray irradiation on DNA/RNA, lipids, and proteins. The proposed approach enabled us to evidence some features not outlined in previous investigations.


Author(s):  
Valerio Ricciardi ◽  
Giuseppe Perna ◽  
Maria Lasalvia ◽  
Ines Delfino ◽  
Lorenzo Manti ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Amnah M. Alshangiti ◽  
Eszter Tuboly ◽  
Shane V. Hegarty ◽  
Cathal M. McCarthy ◽  
Aideen M. Sullivan ◽  
...  

Neuroblastoma is an embryonal malignancy that arises from cells of sympathoadrenal lineage during the development of the nervous system. It is the most common pediatric extracranial solid tumor and is responsible for 15% of childhood deaths from cancer. Fifty percent of cases are diagnosed as high-risk metastatic disease with a low overall 5-year survival rate. More than half of patients experience disease recurrence that can be refractory to treatment. Amplification of the MYCN gene is an important prognostic indicator that is associated with rapid disease progression and a poor prognosis, highlighting the need for new therapeutic approaches. In recent years, there has been an increasing focus on identifying anticancer properties of naturally occurring chalcones, which are secondary metabolites with variable phenolic structures. Here, we report that 4-hydroxychalcone is a potent cytotoxin for MYCN-amplified IMR-32 and SK-N-BE (2) neuroblastoma cells, when compared to non-MYCN-amplified SH-SY5Y neuroblastoma cells and to the non-neuroblastoma human embryonic kidney cell line, HEK293t. Moreover, 4-hydroxychalcone treatment significantly decreased cellular levels of the antioxidant glutathione and increased cellular reactive oxygen species. In addition, 4-hydroxychalcone treatment led to impairments in mitochondrial respiratory function, compared to controls. In support of this, the cytotoxic effect of 4-hydroxychalcone was prevented by co-treatment with either the antioxidant N-acetyl-L-cysteine, a pharmacological inhibitor of oxidative stress-induced cell death (IM-54) or the mitochondrial reactive oxygen species scavenger, Mito-TEMPO. When combined with the anticancer drugs cisplatin or doxorubicin, 4-hydroxychalcone led to greater reductions in cell viability than was induced by either anti-cancer agent alone. In summary, this study identifies a cytotoxic effect of 4-hydroxychalcone in MYCN-amplified human neuroblastoma cells, which rationalizes its further study in the development of new therapies for pediatric neuroblastoma.


Author(s):  
Vega García-Escudero ◽  
Daniel Ruiz-Gabarre ◽  
Ricardo Gargini ◽  
Mar Pérez ◽  
Esther García ◽  
...  

AbstractTauopathies, including Alzheimer’s disease (AD) and frontotemporal lobar degeneration with Tau pathology (FTLD-tau), are a group of neurodegenerative disorders characterized by Tau hyperphosphorylation. Post-translational modifications of Tau such as phosphorylation and truncation have been demonstrated to be an essential step in the molecular pathogenesis of these tauopathies. In this work, we demonstrate the existence of a new, human-specific truncated form of Tau generated by intron 12 retention in human neuroblastoma cells and, to a higher extent, in human RNA brain samples, using qPCR and further confirming the results on a larger database of human RNA-seq samples. Diminished protein levels of this new Tau isoform are found by Westernblotting in Alzheimer’s patients’ brains (Braak I n = 3; Braak II n = 6, Braak III n = 3, Braak IV n = 1, and Braak V n = 10, Braak VI n = 8) with respect to non-demented control subjects (n = 9), suggesting that the lack of this truncated isoform may play an important role in the pathology. This new Tau isoform exhibits similar post-transcriptional modifications by phosphorylation and affinity for microtubule binding, but more interestingly, is less prone to aggregate than other Tau isoforms. Finally, we present evidence suggesting this new Tau isoform could be linked to the inhibition of GSK3β, which would mediate intron 12 retention by modulating the serine/arginine rich splicing factor 2 (SRSF2). Our results show the existence of an important new isoform of Tau and suggest that further research on this less aggregation-prone Tau may help to develop future therapies for Alzheimer’s disease and other tauopathies.


1988 ◽  
Vol 8 (4) ◽  
pp. 1677-1683 ◽  
Author(s):  
C J Thiele ◽  
P S Cohen ◽  
M A Israel

We detected expression of the c-myb proto-oncogene, which was initially thought to be expressed in a tissue-specific manner in cells of hematopoietic lineage, in human tissues of neuronal origin. Since the level of c-myb expression declined during fetal development, we studied the regulation of its expression in human neuroblastoma cell lines induced to differentiate by retinoic acid. The expression of c-myb declined during the maturation of neuroblastoma cells, and this change was mediated by a decrease in c-myb transcription.


Sign in / Sign up

Export Citation Format

Share Document