ASTHROS: The astrophysics stratospheric telescope for high spectral resolution observations at submillimeter-wavelengths

Author(s):  
Jose V. Siles ◽  
Jorge Pineda ◽  
Jonathan H. Kawamura ◽  
Paul F. Goldsmith ◽  
Pietro N. Bernasconi ◽  
...  
2005 ◽  
Vol 13 ◽  
pp. 825-827
Author(s):  
L. M. Ziurys

AbstractMillimeter and submillimeter astronomy has achieved very high spectral resolution (λ/Δλ ≥ 106-107) over the past 20 years. Broad-band spectral-line surveys at these wavelengths have only taken partial advantage of these capabilities. Such surveys could be more effective with an increase in spectral resolution, accompanied by improvement in the stability and bandwidth of spectrometers and the employment of single-sideband detectors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hua-Tian Tu ◽  
An-Qing Jiang ◽  
Jian-Ke Chen ◽  
Wei-Jie Lu ◽  
Kai-Yan Zang ◽  
...  

AbstractUnlike the single grating Czerny–Turner configuration spectrometers, a super-high spectral resolution optical spectrometer with zero coma aberration is first experimentally demonstrated by using a compound integrated diffraction grating module consisting of 44 high dispersion sub-gratings and a two-dimensional backside-illuminated charge-coupled device array photodetector. The demonstrated super-high resolution spectrometer gives 0.005 nm (5 pm) spectral resolution in ultra-violet range and 0.01 nm spectral resolution in the visible range, as well as a uniform efficiency of diffraction in a broad 200 nm to 1000 nm wavelength region. Our new zero-off-axis spectrometer configuration has the unique merit that enables it to be used for a wide range of spectral sensing and measurement applications.


2021 ◽  
Vol 13 (9) ◽  
pp. 1693
Author(s):  
Anushree Badola ◽  
Santosh K. Panda ◽  
Dar A. Roberts ◽  
Christine F. Waigl ◽  
Uma S. Bhatt ◽  
...  

Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest.


2015 ◽  
Vol 53 (2) ◽  
pp. 869-882 ◽  
Author(s):  
Eva M. Ampe ◽  
Dries Raymaekers ◽  
Erin L. Hestir ◽  
Maarten Jansen ◽  
Els Knaeps ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document