Noninvasive sensors for in-situ process monitoring and control in advanced microelectronics manufacturing

Author(s):  
Mehrdad M. Moslehi
Author(s):  
Farhad Imani ◽  
Bing Yao ◽  
Ruimin Chen ◽  
Prahalada Rao ◽  
Hui Yang

Nowadays manufacturing industry faces increasing demands to customize products according to personal needs. This trend leads to a proliferation of complex product designs. To cope with this complexity, manufacturing systems are equipped with advanced sensing capabilities. However, traditional statistical process control methods are not concerned with the stream of in-process imaging data. Also, very little has been done to investigate nonlinearity, irregularity, and inhomogeneity in image stream collected from manufacturing processes. This paper presents the multifractal spectrum and lacunarity measures to characterize irregular and inhomogeneous patterns of image profiles, as well as detect the hidden dynamics of the underlying manufacturing process. Experimental studies show that the proposed method not only effectively characterizes the surface finishes for quality control of ultra-precision machining but also provides an effective model to link process parameters with fractal characteristics of in-process images acquired from additive manufacturing. This, in turn, will allow a swift response to processes changes and consequently reduce the number of defective products. The proposed fractal method has strong potentials to be applied for process monitoring and control in a variety of domains such as ultra-precision machining, additive manufacturing, and biomanufacturing.


2022 ◽  
Vol 43 (3) ◽  
Author(s):  
Jonathan Pearce ◽  
Declan Tucker ◽  
Carmen García Izquierdo ◽  
Raul Caballero ◽  
Trevor Ford ◽  
...  

AbstractMineral insulated, metal sheathed (MI) Type K and Type N thermocouples are widely used in industry for process monitoring and control. One factor that limits their accuracy is the dramatic decrease in the insulation resistance at temperatures above about 600 °C which results in temperature measurement errors due to electrical shunting. In this work the insulation resistance of a cohort of representative MI thermocouples was characterised at temperatures up to 1160 °C, with simultaneous measurements of the error in indicated temperature by in situ comparison with a reference Type R thermocouple. Intriguingly, there appears to be a systematic relationship between the insulation resistance and the error in the indicated temperature. At a given temperature, as the insulation resistance decreases, there is a corresponding increasingly negative error in the temperature measurement. Although the measurements have a relatively large uncertainty (up to about 1 °C in temperature error and up to about 10 % in insulation resistance measurement), the trend is apparent at all temperatures above 600 °C, which suggests that it is real. Furthermore, the correlation disappears at temperatures below about 600 °C, which is consistent with the well-established diminution of insulation resistance breakdown effects below that temperature. This raises the intriguing possibility of using the as-new MI thermocouple calibration as an indicator of insulation resistance breakdown: large deviations of the electromotive force (emf) in the negative direction could indicate a correspondingly low insulation resistance.


Sign in / Sign up

Export Citation Format

Share Document