Blue LED light photobiomodulation in cultured human fibroblasts and keratinocytes cell line

Author(s):  
Giada Magni ◽  
Martina Banchelli ◽  
Federica Cherchi ◽  
Elisabetta Coppi ◽  
Michele Rossi ◽  
...  
Author(s):  
Francesca Rossi ◽  
Giada Magni ◽  
Francesca Tatini ◽  
Martina Banchelli ◽  
Federica Cherchi ◽  
...  

In recent years, photobiomodulation (PBM) has been recognized as a physical therapy in wound management. Despite several published research papers, the mechanism underlying photobiomodulation is still not completely understood. The investigation about application of blue light to improve wound healing is a relatively new research area. Tests in selected patients evidenced a stimulation of the healing process in superficial and chronic wounds treated with a blue LED light emitting at 420 nm; a study in animal model pointed out a faster healing process in superficial wound, with an important role of fibroblasts and myofibroblasts. Here we present a study aiming at evidencing the effects of blue light on the proliferation and metabolism in fibroblasts and keratinocytes. Different light doses were used to treat the cells, evidencing inhibitory and stimulatory effects. Electrophysiology was used to investigate the effects on membrane currents, while Raman spectroscopy revealed the mitochondrial Cytochrome C (Cyt C) oxidase dependence on blue light irradiation. In conclusion, we observed that the blue LED light can be used to modulate the activity of human fibroblasts, and the effects in wound healing are particularly evident when studying the fibroblasts and keratinocytes co-cultures.


Biomedicines ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 573 ◽  
Author(s):  
Giada Magni ◽  
Martina Banchelli ◽  
Federica Cherchi ◽  
Elisabetta Coppi ◽  
Marco Fraccalvieri ◽  
...  

Keloids are an exuberant response to wound healing, characterized by an exaggerated synthesis of collagen, probably due to the increase of fibroblasts activity and to the reduction of their apoptosis rate: currently no standard treatments or pharmacological therapies are able to prevent keloid recurrence. To reach this goal, in recent years some physical treatments have been proposed, and among them the PhotoBioModulation therapy (PBM). This work analyses the effects of a blue LED light irradiation (410–430 nm, 0.69 W/cm2 power density) on human fibroblasts, isolated from both keloids and perilesional tissues. Different light doses (3.43–6.87–13.7–20.6–30.9 and 41.2 J/cm2) were tested. Biochemical assays and specific staining were used to assess cell metabolism, proliferation and viability. Micro-Raman spectroscopy was used to explore direct effects of the blue LED light on the Cytochrome C (Cyt C) oxidase. We also investigated the effects of the irradiation on ionic membrane currents by patch-clamp recordings. Our results showed that the blue LED light can modulate cell metabolism and proliferation, with a dose-dependent behavior and that these effects persist at least till 48 h after treatment. Furthermore, we demonstrated that the highest fluence value can reduce cell viability 24 h after irradiation in keloid-derived fibroblasts, while the same effect is observed 48 h after treatment in perilesional fibroblasts. Electrophysiological recordings showed that the medium dose (20.6 J/cm2) of blue LED light induces an enhancement of voltage-dependent outward currents elicited by a depolarizing ramp protocol. Overall, these data demonstrate the potentials that PBM shows as an innovative and minimally-invasive approach in the management of hypertrophic scars and keloids, in association with current treatments.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 41
Author(s):  
Francesca Rossi ◽  
Giada Magni ◽  
Francesca Tatini ◽  
Martina Banchelli ◽  
Federica Cherchi ◽  
...  

In recent years, photobiomodulation (PBM) has been recognized as a physical therapy in wound management. Despite several published research papers, the mechanism underlying photobiomodulation is still not completely understood. The investigation about application of blue light to improve wound healing is a relatively new research area. Tests in selected patients evidenced a stimulation of the healing process in superficial and chronic wounds treated with a blue LED light emitting at 420 nm; a study in animal model pointed out a faster healing process in superficial wound, with an important role of fibroblasts and myofibroblasts. Here, we present a study aiming at evidencing the effects of blue light on the proliferation and metabolism in fibroblasts from healthy skin and keratinocytes. Different light doses (3.43, 6.87, 13.7, 20.6, 30.9 and 41.2 J/cm2) were used to treat the cells, evidencing inhibitory and stimulatory effects following a biphasic dose behavior. Electrophysiology was used to investigate the effects on membrane currents: healthy fibroblasts and keratinocytes showed no significant differences between treated and not treated cells. Raman spectroscopy revealed the mitochondrial Cytochrome C (Cyt C) oxidase dependence on blue light irradiation: a significant decrease in peak intensity of healthy fibroblast was evidenced, while it is less pronounced in keratinocytes. In conclusion, we observed that the blue LED light can be used to modulate metabolism and proliferation of human fibroblasts, and the effects in wound healing are particularly evident when studying the fibroblasts and keratinocytes co-cultures.


2018 ◽  
pp. 73-79
Author(s):  
A.L. Kosakovskyi ◽  
◽  
S.O. Gulyar ◽  
I.A. Kosakivska ◽  
N.P. Grushetska ◽  
...  

2017 ◽  
Vol 68 (6) ◽  
pp. 1341-1344
Author(s):  
Grigore Berea ◽  
Gheorghe Gh. Balan ◽  
Vasile Sandru ◽  
Paul Dan Sirbu

Complex interactions between stem cells, vascular cells and fibroblasts represent the substrate of building microenvironment-embedded 3D structures that can be grafted or added to bone substitute scaffolds in tissue engineering or clinical bone repair. Human Adipose-derived Stem Cells (hASCs), human umbilical vein endothelial cells (HUVECs) and normal dermal human fibroblasts (NDHF) can be mixed together in three dimensional scaffold free constructs and their behaviour will emphasize their potential use as seeding points in bone tissue engineering. Various combinations of the aforementioned cell lines were compared to single cell line culture in terms of size, viability and cell proliferation. At 5 weeks, viability dropped for single cell line spheroids while addition of NDHF to hASC maintained the viability at the same level at 5 weeks Fibroblasts addition to the 3D construct of stem cells and endothelial cells improves viability and reduces proliferation as a marker of cell differentiation toward osteogenic line.


2020 ◽  
Vol 11 (47) ◽  
pp. 7497-7505
Author(s):  
Jiannan Cheng ◽  
Kai Tu ◽  
Enjie He ◽  
Jinying Wang ◽  
Lifen Zhang ◽  
...  

A novel strategy for preparing block copolymers with semifluorinated alternating copolymers as macroinitiators was established by photocontrolled iodine-mediated RDRP under irradiation with blue LED light at room temperature.


1988 ◽  
Vol 263 (26) ◽  
pp. 12886-12892 ◽  
Author(s):  
H Greve ◽  
Z Cully ◽  
P Blumberg ◽  
H Kresse

1987 ◽  
Vol 262 (36) ◽  
pp. 17412-17419 ◽  
Author(s):  
W B Rizzo ◽  
D A Craft ◽  
A L Dammann ◽  
M W Phillips

Sign in / Sign up

Export Citation Format

Share Document