Utilization of femtosecond lasers for high efficiency and high reliability glass chip fabrication

Author(s):  
Jiyeon Choi
2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


Author(s):  
Yunfei Fu ◽  
Hongchuan Yu ◽  
Chih-Kuo Yeh ◽  
Tong-Yee Lee ◽  
Jian J. Zhang

Brushstrokes are viewed as the artist’s “handwriting” in a painting. In many applications such as style learning and transfer, mimicking painting, and painting authentication, it is highly desired to quantitatively and accurately identify brushstroke characteristics from old masters’ pieces using computer programs. However, due to the nature of hundreds or thousands of intermingling brushstrokes in the painting, it still remains challenging. This article proposes an efficient algorithm for brush Stroke extraction based on a Deep neural network, i.e., DStroke. Compared to the state-of-the-art research, the main merit of the proposed DStroke is to automatically and rapidly extract brushstrokes from a painting without manual annotation, while accurately approximating the real brushstrokes with high reliability. Herein, recovering the faithful soft transitions between brushstrokes is often ignored by the other methods. In fact, the details of brushstrokes in a master piece of painting (e.g., shapes, colors, texture, overlaps) are highly desired by artists since they hold promise to enhance and extend the artists’ powers, just like microscopes extend biologists’ powers. To demonstrate the high efficiency of the proposed DStroke, we perform it on a set of real scans of paintings and a set of synthetic paintings, respectively. Experiments show that the proposed DStroke is noticeably faster and more accurate at identifying and extracting brushstrokes, outperforming the other methods.


2017 ◽  
Vol 168 (1) ◽  
pp. 122-124
Author(s):  
Marek BRZEŻAŃSKI ◽  
Michał MARECZEK ◽  
Marek SUTKOWSKI ◽  
Wojciech SMUGA

Huge amount of by-products is still considered as waste and is simply disposed, for example by-product gas is usually flared. Political and social pressure to reduce air pollution and national needs for energy security make these waste fuels interesting for near-future power generation. Unfortunately most of these waste fuels, even when liquefied or gasified, have very low quality and can hardly be used in high-efficiency power systems. Among main challenges are low calorific value and composition fluctuation. Additionally very often there is a high content of sulphur, siloxanes, tars, etc., which have to be removed from the fuel. Modern 4-stroke gas engines designed for power generation applications provide very high efficiency, high reliability and availability. Unfortunately, these gas engines require high quality fuel with stable composition. Horus-Energia together with Cracow University of Technology developed a novel gas supply system HE-MUZG that can adapt to current gas quality and change engine settings accordingly.This article will present results from the HE-MUZG system tests on modern 4-stroke spark-ignition gas engine. Tests focus on low quality gas, such as gas with low calorific value, gas with very low methane number and gas with very big variations of calorific value. Test results compared with performance of that engine in the original configuration show huge improvements. Moreover the HE- MUZG system is easy to implement in commercial gensets.


Author(s):  
Yuwono Bimo Purnomo ◽  
F. Danang Wijaya ◽  
Eka Firmansyah

In a standalone photovoltaic (PV) system, a bidirectional DC converter (BDC) is needed to prevent the battery from damage caused by DC bus voltage variation. In this paper, BDC was applied in a standalone solar PV system to interface the battery with a DC bus in a standalone PV system. Therefore, its bidirectional power capability was focused on improving save battery operation while maintaining high power quality delivery. A non-isolated, buck and boost topology for the BDC configuration was used to interface the battery with the DC bus. PID controller-based control strategy was chosen for easy implementation, high reliability, and high dynamic performance. A simulation was conducted using MATLAB Simulink program. The simulation results show that the implementation of the BDC controller can maintain the DC bus voltage to 100 V, have high efficiency at 99.18% in boost mode and 99.48% in buck mode. To prevent the battery from overcharging condition, the BDC stops the charging process and then works as a voltage regulator to maintain the DC bus voltage at reference value.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2191 ◽  
Author(s):  
Juyong Kim ◽  
Hongjoo Kim ◽  
Jintae Cho ◽  
Youngpyo Cho

This paper describes the design and field application of a high-efficiency single-phase AC/DC converter that is suitable for distribution lines. First, an appropriate AC/DC converter was designed in consideration of the environment of the application system. In order to ensure high efficiency and high reliability, we designed an optimum switching element and capacitor suitable for the converter, and the protection element of the AC/DC converter was designed based on these elements. The control function for the power converter suitable for an LVDC distribution system is proposed for highly reliable operation. The AC/DC converter was manufactured based on the design and its performance was verified during application in an actual low-voltage DC (LVDC) distribution grid through tests at the demonstration site. The application to a DC distribution system in an actual grid is very rare and it is expected that it will contribute to the expansion of LVDC distribution.


Author(s):  
Libero Paolucci ◽  
Emanuele Grasso ◽  
Francesco Grasso ◽  
Niklas König ◽  
Marco Pagliai ◽  
...  

Underwater vehicle propulsion performed by exploiting electrical motor is in general the most flexible solution and it is growing in popularity because of its high efficiency both at high and at low advance speed, quick and simple deployment, low costs, and encumbrance. In the present work, permanent magnet synchronous motors for underwater propulsion are proposed. In particular, advanced sensorless control techniques of permanent magnet synchronous motors permit reduced costs, high reliability, and performances. When dealing with small autonomous underwater vehicle propulsion, such devices are hard to find in the market. Hence, the authors focused the research in the development of a system able to perform a reliable rotational speed and torque sensorless estimation. The design and implementation of a complete solution for underwater propulsion are presented as well as a novel rotor polarity identification technique exploiting a high-frequency injection control. Pool tests for the identification of the performances and of the dynamic parameters of the propulsion system are presented. Finally, the possibility of operating a sensorless estimation of the thrust and torque exerted by the propeller and pool test measurements are presented. These features could be exploited to improve navigation accuracy and involves obvious benefits in terms of cost reduction and reliability of the system.


Author(s):  
Hideyuki Imai ◽  
Tatsuhiko Goi ◽  
Kenichi Kijima ◽  
Tooru Nishida ◽  
Hidenori Arisawa ◽  
...  

The open rotor engine is a next generation aero-engine that satisfies the demand for high fuel efficiency and low CO2 emission. A differential planetary gear system is incorporated in the open rotor engine to connect the turbine output shaft and fan rotors in order to counter-rotate the fan rotors as well as allow the turbine and fan rotors to operate at more efficient speeds. The open rotor gear system is required to have not only 20,000 hp high power transmission, but also an increasingly high efficiency, high reliability and light weight. To achieve these requirements, the following design works were conducted; (1) a low misalignment and lightweight carrier, (2) a flexible structure to absorb the displacement caused by the flight load, (3) an optimum gear tooth modification and (4) reduction of oil churning and windage losses. Also, extensive analyses and simulations such as lube oil flow CFD, FEA and tooth contact analysis were conducted. A full scale prototype gear system was manufactured and validation tests were conducted using a newly constructed test rig to validate the design concept. A slow roll test, rated performance test and efficiency test were conducted. And the design concept was found to be valid. This paper describes details of the prototype design and the results of the validation tests.


2013 ◽  
Vol 11 (2) ◽  
Author(s):  
Wei Zhang ◽  
Cheng-wei Wu

When individual proton exchange membrane fuel cells (PEMFCs) are assembled together to form a stack and provide energy for practical applications, an appropriate clamping load is usually required to render the stack high efficiency, high reliability, and excellent durability. From both modeling and experimental aspects, this article first highlights the effect of clamping load on the electron transfer, mass (water and reactant gases) transfer, and heat transfer in a PEMFC stack and then puts the attentions on the optimization design of clamping load with emphases on the optimal clamping load and the homogenous distribution of clamping load. This summary may deepen our understanding of the assembly of a PEMFC stack and provide referential information for the designer and manufacturer.


Sign in / Sign up

Export Citation Format

Share Document