High speed polymer 3D printing

Author(s):  
Joseph M. DeSimone
Keyword(s):  
2018 ◽  
Vol 39 (7) ◽  
pp. 1700809 ◽  
Author(s):  
Xiao Kuang ◽  
Zeang Zhao ◽  
Kaijuan Chen ◽  
Daining Fang ◽  
Guozheng Kang ◽  
...  

2018 ◽  
Vol 30 (18) ◽  
pp. 1705683 ◽  
Author(s):  
Xiangfan Chen ◽  
Wenzhong Liu ◽  
Biqin Dong ◽  
Jongwoo Lee ◽  
Henry Oliver T. Ware ◽  
...  

2021 ◽  
Vol 2103 (1) ◽  
pp. 012033
Author(s):  
M A Kotov ◽  
N A Monakhov ◽  
S A Poniaev ◽  
P A Popov ◽  
K V Tverdokhlebov

Abstract The features of 3D printing method for rapid prototyping and manufacturing of models for a pulsed high-speed gas-dynamic experiment are considered. Modern additive technologies allow the production of models. The basic properties of the materials and the advantages of 3D printing methods are described. The structure and properties of the obtained models can be unattainable using traditional manufacturing techniques. The design of the wind tunnel nozzle block is considered, which provides for the production of profiled contours using 3D printing. The advantages and disadvantages of use of such units on the shock tube are considered.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2406 ◽  
Author(s):  
Yue Wang ◽  
Zhiyao Xu ◽  
Dingdi Wu ◽  
Jiaming Bai

3D printing technology, which greatly simplifies the manufacturing of complex parts by a two-dimensional layer-upon-layer process, has flourished in recent years. As one of the most advanced technology, polymer powder 3D printing has many advantages such as high materials utilization rate, free of support structure, great design freedom, and large available materials, which has shown great potential and prospects in various industry applications. With the launch of the Multi jet Fusion system from HP, polymer powder 3D printing has been attracting more attention from industries and researchers. In this work, a comprehensive review of the main polymer powder-based 3D printing methods including binder jetting, selective laser sintering, high-speed sintering were carried out. Their forming mechanism, advantages and drawbacks, materials, and developments were presented, compared, and discussed respectively. In addition, this paper also gives suggestions on the process selection by comparing typical equipment parameters and features of each technology.


2019 ◽  
Vol 27 (18) ◽  
pp. 25119 ◽  
Author(s):  
Dmitrii Perevoznik ◽  
Rashid Nazir ◽  
Roman Kiyan ◽  
Kestutis Kurselis ◽  
Beata Koszarna ◽  
...  

Author(s):  
Joshua J. Wagner ◽  
Hang Shu ◽  
Rahul Kilambi

Wide-scale adoption of binder jet 3D printing for mission-critical components in aerospace, biomedical, defense, and energy applications requires improvement in mechanical properties and performance characteristics of end-use components. Increased fidelity may be achieved with better understanding of the interfacial physics and complex fluid-particle interactions fundamental to the process. In this work, an experimental testing apparatus and procedure is developed to investigate the fluid and particle dynamics occurring upon impact of jetted binder droplets onto a powder bed. High-speed, microscopic imaging is employed to capture short time-scale phenomena such as ballistic particle ejection, capillary flow, and particle clustering. The effects of different process parameters (e.g., translational printhead velocity, jetting frequency, and impact velocity) on the dynamics of Inconel powder are studied. These experiments reveal that the fluid-particle interaction is significantly affected by a combination of printing parameters, ultimately governing the quality and performance of binder jet 3D printed components.


2021 ◽  
Vol 1037 ◽  
pp. 26-31
Author(s):  
Ekaterina Potapova ◽  
Tatiana Guseva ◽  
Kirill Shchelchkov ◽  
Hans Bertram Fischer

3D construction printer - is an innovative construction approach with which building elements can be constructed without the use of formwork and you to get products of various complex shapes with minimal time and material costs. Binder 3D printing technology results in a cheap and high-speed construction method that allows greater freedom in both architectural and structural design of concrete. The principle of operation of a 3D printer is based on the principle of gradual (layer-by-layer) creation of a solid model, which is, as it were, "grown" from a certain binding material. The working mixture must have thixotropic and adhesive properties, it must be workable by the printer and at the same time not spread under the influence of subsequent layers. Therefore, it is important to select the composition of the composition of the working mixture. This paper presents the results of a study on the development of the composition of a working mixture based on a gypsum-cement-pozzolanic binder. The developed composition of the gypsum-cement-pozzolanic binder with a complex of modifying additives is characterized by low spreadability, high viscosity and is easy to lay.


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4236 ◽  
Author(s):  
Mahshid Padash ◽  
Christian Enz ◽  
Sandro Carrara

Wearable devices are nowadays at the edge-front in both academic research as well as in industry, and several wearable devices have been already introduced in the market. One of the most recent advancements in wearable technologies for biosensing is in the area of the remote monitoring of human health by detection on-the-skin. However, almost all the wearable devices present in the market nowadays are still providing information not related to human ‘metabolites and/or disease’ biomarkers, excluding the well-known case of the continuous monitoring of glucose in diabetic patients. Moreover, even in this last case, the glycaemic level is acquired under-the-skin and not on-the-skin. On the other hand, it has been proven that human sweat is very rich in molecules and other biomarkers (e.g., ions), which makes sweat a quite interesting human liquid with regards to gathering medical information at the molecular level in a totally non-invasive manner. Of course, a proper collection of sweat as it is emerging on top of the skin is required to correctly convey such liquid to the molecular biosensors on board of the wearable system. Microfluidic systems have efficiently come to the aid of wearable sensors, in this case. These devices were originally built using methods such as photolithographic and chemical etching techniques with rigid materials. Nowadays, fabrication methods of microfluidic systems are moving towards three-dimensional (3D) printing methods. These methods overcome some of the limitations of the previous method, including expensiveness and non-flexibility. The 3D printing methods have a high speed and according to the application, can control the textures and mechanical properties of an object by using multiple materials in a cheaper way. Therefore, the aim of this paper is to review all the most recent advancements in the methods for 3D printing to fabricate wearable fluidics and provide a critical frame for the future developments of a wearable device for the remote monitoring of the human metabolism directly on-the-skin.


2018 ◽  
Vol 30 (18) ◽  
pp. 1870123 ◽  
Author(s):  
Xiangfan Chen ◽  
Wenzhong Liu ◽  
Biqin Dong ◽  
Jongwoo Lee ◽  
Henry Oliver T. Ware ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document