Nanostructured active and photosensitive fibres for laser applications

Author(s):  
Ryszard Buczynski ◽  
Marcin Franczyk ◽  
Ivan Kašík ◽  
Alicja Anuszkiewicz ◽  
Tomasz Osuch ◽  
...  
Keyword(s):  
Author(s):  
G. Suresh ◽  
K. Sambath Kumar ◽  
P. Ambalavanan ◽  
P. Kumaresan

Zinc Thiourea Sulphate (ZTS), crystal is a magnificent metal natural compound, which consolidates the upsides of both natural and inorganic materials when contrasted and other customary non-linear optical materials and in this way can be utilized as a part of a more extensive scope of uses. Late endeavors at delivering new recurrence transformation materials have concentrated essentially on expanding the extent of the NLO properties that can recurrence twofold low pinnacle control sources, for example, diode lasers.  The thermo gravimetric examination (TGA) and differential warm investigation (DTA) were completed utilizing Seiko warm analyzer at warming rate 20°C/min in air to decide the warm dependability of the compound. ZTS crystals were developed by moderate cooling procedure. This empowers the development of mass gems along all the three bearings at an ideal pH. FTIR examines demonstrate that in the spectra of ZTS there is a move in the recurrence band in the low-recurrence district which uncovers that thiourea shapes sulfur-to-zinc securities in the ZTS crystals. The stability and charge delocalization of the molecule were also studied by natural bond orbital (NBO) analysis. The HOMO-LUMO energies describe the charge transfer takes place within the molecule. Molecular electrostatic potential has been analyzed.  The developments try in extensive scale with this enhanced pH qualities is required to yield mass crystal appropriate for laser combination tests and SHG device applications.


2013 ◽  
Author(s):  
Kotaro Sena ◽  
Amarjit S. Virdi

Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 239
Author(s):  
Lingling Yang ◽  
Ruwei Zhao ◽  
Duanduan Wu ◽  
Tianxiang Xu ◽  
Xiaobiao Liu ◽  
...  

A novel 2H-phase transition metal dichalcogenide (TMD)–tantalum selenide (TaSe2) with metallic bandgap structure is a potential photoelectric material. A band structure simulation of TaSe2 via ab initio method indicated its metallic property. An effective multilayered TaSe2 saturable absorber (SA) was fabricated using liquid-phase exfoliation and optically driven deposition. The prepared 2H–TaSe2 SA was successfully used for a dual-wavelength Q-switched fiber laser with the minimum pulse width of 2.95 μs and the maximum peak power of 64 W. The repetition rate of the maximum pulse energy of 89.9 kHz was at the level of 188.9 nJ. The metallic 2H–TaSe2 with satisfactory saturable absorbing capability is a promising candidate for pulsed laser applications.


Sign in / Sign up

Export Citation Format

Share Document