Inter-annual variations of the aerosol optical depth of the atmosphere at the Mirny Antarctic Observatory

2021 ◽  
Author(s):  
Dmitry M. Kabanov ◽  
Ivan A. Kruglinsky ◽  
Vladimir F. Radionov ◽  
Grigory E. Ryabkov ◽  
Sergey M. Sakerin
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Mabrouk Chaâbane ◽  
Chafai Azri ◽  
Khaled Medhioub

Atmospheric and climatic data measured at Thala site (Tunisia) for a long-time period (1977–2001) are used to analyse the monthly, seasonal, and annual variations of the aerosol optical depth at 1 μm wavelength. We have shown that aerosol and microphysical properties and the dominating aerosol types depend on seasons. A comparison of the seasonal cycle of aerosol optical characteristics at Thala site showed that the contribution of long-range transported particles is expected to be larger in summer as a consequence of the weather stability typical of this season. Also, the winter decrease in atmospheric turbidity may result from increases in relative humidity and decreases in temperature, leading to increased particle size and mass and increased fall and deposition velocities. The spring and autumn weather patterns usually carry fine dust and sand particles for the desert area to Thala region. The annual behaviour of the aerosol optical depth recorded a period of stead increase started in 1986 until 2001. Trends in atmospheric turbidity after 1988 could be explained other ways by the contribution of the eruption of Mount Pinatubo in 1991 and by local or regional changes in climate or in aerosol emissions.


2018 ◽  
Author(s):  
Bin Zhao ◽  
Jonathan H. Jiang ◽  
David J. Diner ◽  
Hui Su ◽  
Yu Gu ◽  
...  

Abstract. The relatively short lifetimes of aerosols in the atmosphere result in climatic and health effects that are strongly dependent on intra-annual variations in particle concentrations. While many studies have examined the seasonal and diurnal variations of regional aerosol optical depth (AOD), understanding the temporal variations in aerosol vertical distribution and particle types is also important for accurate computation of aerosol radiative effects. In this paper, we combine the observations from four satellite-borne sensors and ground-based AOD and fine particle (PM2.5) measurements to investigate the seasonal and diurnal variations of aerosol column loading, vertical distribution, and particle types over three populous regions: the Eastern United States (EUS), Western Europe (WEU), and Eastern and Central China (ECC). In all three regions, column AOD, as well as AOD higher than 800 m above ground level, peaks in summer/spring probably due to accelerated formation of secondary aerosols and hygroscopic growth. However, AOD at height below 800 m mostly peaks in winter except that a second maximum in summer occurs over the EUS region, which is consistent with observed temporal trends in surface PM2.5 concentrations. AOD due to fine particles ( 1.4 μm diameter) generally shows less variability, except for the ECC region where a peak occurs in spring, consistent with the prevalence of airborne dust during this season. When aerosols are classified according to sources, the dominant type is associated with anthropogenic air pollution, which has a similar seasonal pattern as total AOD. Dust and sea-spray aerosols in the WEU region peak in summer and winter, respectively, but do not show an obvious seasonal pattern in the EUS region. Smoke aerosols, as well as absorbing aerosols, present an obvious unimodal distribution with a maximum occurring in summer over the EUS and WEU regions, whereas they follow a bimodal distribution with peaks in August and March (due to crop residue burning) over the ECC region. In general, the nighttime-daytime AOD difference is more positive in summer than in winter, likely attributable to a larger diurnal temperature range in summer. Smoke AOD is much higher in the nighttime than in the daytime. The results of this study can help to improve the current estimates of the climatic and health impacts of aerosols.


2018 ◽  
Vol 18 (15) ◽  
pp. 11247-11260 ◽  
Author(s):  
Bin Zhao ◽  
Jonathan H. Jiang ◽  
David J. Diner ◽  
Hui Su ◽  
Yu Gu ◽  
...  

Abstract. The climatic and health effects of aerosols are strongly dependent on the intra-annual variations in their loading and properties. While the seasonal variations of regional aerosol optical depth (AOD) have been extensively studied, understanding the temporal variations in aerosol vertical distribution and particle types is also important for an accurate estimate of aerosol climatic effects. In this paper, we combine the observations from four satellite-borne sensors and several ground-based networks to investigate the seasonal variations of aerosol column loading, vertical distribution, and particle types over three populous regions: the Eastern United States (EUS), Western Europe (WEU), and Eastern and Central China (ECC). In all three regions, column AOD, as well as AOD at heights above 800 m, peaks in summer/spring, probably due to accelerated formation of secondary aerosols and hygroscopic growth. In contrast, AOD below 800 m peaks in winter over WEU and ECC regions because more aerosols are confined to lower heights due to the weaker vertical mixing. In the EUS region, AOD below 800 m shows two maximums, one in summer and the other in winter. The temporal trends in low-level AOD are consistent with those in surface fine particle (PM2.5) concentrations. AOD due to fine particles (<0.7 µm diameter) is much larger in spring/summer than in winter over all three regions. However, the coarse mode AOD (>1.4 µm diameter), generally shows small variability, except that a peak occurs in spring in the ECC region due to the prevalence of airborne dust during this season. When aerosols are classified according to sources, the dominant type is associated with anthropogenic air pollution, which has a similar seasonal pattern as total AOD. Dust and sea-spray aerosols in the WEU region peak in summer and winter, respectively, but do not show an obvious seasonal pattern in the EUS region. Smoke aerosols, as well as absorbing aerosols, present an obvious unimodal distribution with a maximum occurring in summer over the EUS and WEU regions, whereas they follow a bimodal distribution with peaks in August and March (due to crop residue burning) over the ECC region.


2020 ◽  
Vol 16 (1) ◽  
pp. 1-14
Author(s):  
Monim Jiboori ◽  
Nadia Abed ◽  
Mohamed Abdel Wahab

Tellus B ◽  
2006 ◽  
Vol 58 (3) ◽  
Author(s):  
Carlos Toledano ◽  
Victoria Cachorro ◽  
Alberto Berjón ◽  
Mar Sorribas ◽  
Ricardo Vergaz ◽  
...  

2017 ◽  
Vol 2 (6) ◽  
Author(s):  
Yaseen Kadhim Abbas Al-Timimi ◽  
Ali Challob Khraibet

Aerosol Optical Depth (AOD) is the measure of aerosol distributed with a Column of air from earth’s surface to the top of atmosphere, in this study, temperature variation of aerosol optical depth (AOD) in Baghdad was analyzed Moderate Resolution Imaging Spectrometer (MODIS) from Terra and its relationship with temperature for the period 2003 – 2015 were examined. The highest values for mean seasonal AOD were observed in spring and summer and the maximum AOD values ranged from 0.50 to 0.58 by contrast minimum AOD values ranging from 0.30 to 0.41 were found in winter and autumn. Results of study also showed that the temperature (max., min., mean air temperature and DTR) have a strong correlation with AOD (0.82, 0.83, 0.82 and 0.65) respectively.


Sign in / Sign up

Export Citation Format

Share Document