Ultrasonic with rotating tool center point and kinematics

2021 ◽  
Author(s):  
Michael J. Cahill ◽  
Mike Bechtold ◽  
Rob Bechtold
Keyword(s):  
2021 ◽  
Vol 11 (9) ◽  
pp. 4241
Author(s):  
Jiahua Wu ◽  
Hyo Jong Lee

In bottom-up multi-person pose estimation, grouping joint candidates into the appropriately structured corresponding instance of a person is challenging. In this paper, a new bottom-up method, the Partitioned CenterPose (PCP) Network, is proposed to better cluster the detected joints. To achieve this goal, we propose a novel approach called Partition Pose Representation (PPR) which integrates the instance of a person and its body joints based on joint offset. PPR leverages information about the center of the human body and the offsets between that center point and the positions of the body’s joints to encode human poses accurately. To enhance the relationships between body joints, we divide the human body into five parts, and then, we generate a sub-PPR for each part. Based on this PPR, the PCP Network can detect people and their body joints simultaneously, then group all body joints according to joint offset. Moreover, an improved l1 loss is designed to more accurately measure joint offset. Using the COCO keypoints and CrowdPose datasets for testing, it was found that the performance of the proposed method is on par with that of existing state-of-the-art bottom-up methods in terms of accuracy and speed.


2021 ◽  
Vol 13 (8) ◽  
pp. 1417
Author(s):  
Jiguang Dai ◽  
Rongchen Ma ◽  
Litao Gong ◽  
Zimo Shen ◽  
Jialin Wu

Road extraction in rural areas is one of the most fundamental tasks in the practical application of remote sensing. In recent years, sample-driven methods have achieved state-of-the-art performance in road extraction tasks. However, sample-driven methods are prohibitively expensive and laborious, especially when dealing with rural roads with irregular curvature changes, narrow widths, and diverse materials. The template matching method can overcome these difficulties to some extent and achieve impressive road extraction results. This method also has the advantage of the vectorization of road extraction results, but the automation is limited. Straight line sequences can be substituted for curves, and the use of the color space can increase the recognition of roads and nonroads. A model-driven-to-sample-driven road extraction method for rural areas with a much higher degree of automation than existing template matching methods is proposed in this study. Without prior samples, on the basis of the geometric characteristics of narrow and long roads and using the advantages of straight lines instead of curved lines, the road center point extraction model is established through length constraints and gray mean contrast constraints of line sequences, and the extraction of some rural roads is completed through topological connection analysis. In addition, we take the extracted road center point and manual input data as local samples, use the improved line segment histogram to determine the local road direction, and use the panchromatic and hue, saturation, value (HSV) space interactive matching model as the matching measure to complete the road tracking extraction. Experimental results show that, for different types of data and scenarios on the premise, the accuracy and recall rate of the evaluation indicators reach more than 98%, and, compared with other methods, the automation of this algorithm has increased by more than 40%.


2005 ◽  
Vol 15 (12) ◽  
pp. 3999-4006 ◽  
Author(s):  
FENG-JUAN CHEN ◽  
FANG-YUE CHEN ◽  
GUO-LONG HE

Some image processing research are restudied via CNN genes with five variables, and this include edge detection, corner detection, center point extraction and horizontal-vertical line detection. Although they were implemented with nine variables, the results of computer simulation show that the effect with five variables is identical to or better than that with nine variables.


Author(s):  
J. A. Schaaf ◽  
J. A. Lammers

Abstract In this paper we develop a method of characterizing the center-point curves for planar four-position synthesis. We predict the five characteristic shapes of the center-point curve using the kinematic classification of the compatibility linkage obtained from a complex number formulation for planar four-position synthesis. This classification scheme is more extensive than the conventional Grashof and non-Grashof classifications in that the separate classes of change point compatibility linkages are also included. A non-Grashof compatibility linkage generates a unicursal form of the center-point curve; a Grashof compatibility linkage generates a bicursal form; a single change point compatibility linkage generates a double point form; and a double or triple change point compatibility linkage generates a circular-degenerate or a hyperbolic-degenerate form.


Author(s):  
Maher G. Mohamed

Abstract The screw algebra is used to efficiently derive expressions in compact form for both the angular accelerations of the moving links and the linear accelerations of points on the links of platform-type manipulators. The analysis employs the property that the acceleration state of the manipulator platform can be determined by considering the acceleration states of the links of only one — any one — of the manipulator legs. The obtained expressions provide an ease in symbolic and algebraic manipulation. The analysis is then extended to specify the acceleration center point of ithe nstantaneous motion of the manipulator platform. The acceleration center point is then used in expressing the distribution of the acceleration field of the platform instant motion which is important in manipulator synthesis. The special case of planar manipulators is studied and simpler expressions are derived. Numerical examples are presented for the analysis of a 3-DOF planar platform-type and of a 6-DOF spatial “Stewart Platform” manipulators to illustrate the analysis procedure.


Sign in / Sign up

Export Citation Format

Share Document