Optical absorption, photoionization and binding energy of shallow donor impurity in spherical multilayered quantum dot

2021 ◽  
Author(s):  
Volodymyr Holovatsky ◽  
Natalia Holovatska ◽  
Marina Chubrei
2006 ◽  
Vol 20 (18) ◽  
pp. 1127-1134 ◽  
Author(s):  
A. JOHN PETER

The binding energy of a shallow hydrogenic impurity of a spherical quantum dot confined by harmonic oscillator-like and by rectangular well-like potentials, using a variational procedure within the effective mass approximation, has been determined. The calculations of the binding energy of the donor impurity as a function of the system geometry, and the donor impurity position have been investigated. The binding energy of shallow donor impurity depends not only on the quantum confinements but also on the impurity position. Our results reveal that (i) the donor binding energy decreases as the dot size increases irrespective of the impurity position, and (ii) the binding energy values of rectangular confinement are larger than the values of parabolic confinement and (iii) the rectangular confinement is better than the parabolic confinement in a spherical quantum dot.


2012 ◽  
Vol 26 (06) ◽  
pp. 1250013 ◽  
Author(s):  
F. UNGAN ◽  
U. YESILGUL ◽  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SOKMEN

The effects of nitrogen and indium mole concentration on the intersubband optical absorption for (1–2) transition and the binding energy of the shallow-donor impurities in a Ga 1-x In x N y As 1-y/ GaAs / Al 0.3 Ga 0.7 As quantum well under the electric field is theoretically calculated within the framework of the effective-mass approximation. Results are obtained for several concentrations of nitrogen and indium, and the applied electric field. The numerical results show that the intersubband transitions and the impurity binding energy strongly depend on the nitrogen and indium concentrations.


2010 ◽  
Vol 43 (1) ◽  
pp. 372-374 ◽  
Author(s):  
Chaojin Zhang ◽  
Zhanxin Wang ◽  
Ying Liu ◽  
Kangxian Guo

2020 ◽  
Vol 330 ◽  
pp. 01012
Author(s):  
Walid Belaid ◽  
Haddou El Ghazi ◽  
Izeddine Zorkani ◽  
Anouar Jorio

In the present paper, the binding energy of hydrogenic shallow-donor impurity in simple and double coupled quantum wells based on unstrained wurtzite (In,Ga)N/GaN is investigated. Considering the effective-mass and dielectric mismatches between the well and its surrounding matrix, the numerical calculations are performed within the framework of the parabolic band and the single band effective-mass approximations under the finite potential barrier using finite element method (FEM). According to our results, it appears that the main effect of the wells coupling is to enhance the binding energy. It is also obtained that the binding energy is strongly sensitive to the internal and external parameters and can be adjusted by the quantum well/barrier width, the impurity position and the internal Indium composition. Our results are in good agreement with the finding especially for those obtained by the variational approach.


Sign in / Sign up

Export Citation Format

Share Document