Binding energy of shallow donor impurity in asymmetric quantum wells

2010 ◽  
Vol 43 (1) ◽  
pp. 372-374 ◽  
Author(s):  
Chaojin Zhang ◽  
Zhanxin Wang ◽  
Ying Liu ◽  
Kangxian Guo
2020 ◽  
Vol 330 ◽  
pp. 01012
Author(s):  
Walid Belaid ◽  
Haddou El Ghazi ◽  
Izeddine Zorkani ◽  
Anouar Jorio

In the present paper, the binding energy of hydrogenic shallow-donor impurity in simple and double coupled quantum wells based on unstrained wurtzite (In,Ga)N/GaN is investigated. Considering the effective-mass and dielectric mismatches between the well and its surrounding matrix, the numerical calculations are performed within the framework of the parabolic band and the single band effective-mass approximations under the finite potential barrier using finite element method (FEM). According to our results, it appears that the main effect of the wells coupling is to enhance the binding energy. It is also obtained that the binding energy is strongly sensitive to the internal and external parameters and can be adjusted by the quantum well/barrier width, the impurity position and the internal Indium composition. Our results are in good agreement with the finding especially for those obtained by the variational approach.


2002 ◽  
Vol 09 (05n06) ◽  
pp. 1753-1756 ◽  
Author(s):  
A. MONTES ◽  
A. L. MORALES ◽  
C. A. DUQUE

The present work investigates the effects of the hydrostatic pressure and the external applied electric field on the binding energy for shallow donor impurities in GaAs–Ga 1 - x Al x As quantum wells. The effective mass approximation is used and a trial envelope wave function is adopted for the impurity carrier. For fixed well width and applied electric field, the binding energy of the shallow donor impurity is enhanced by increasing the external hydrostatic pressure, and for fixed well width and hydrostatic pressure, the binding energy decreases by increasing the external electric field.


2006 ◽  
Vol 13 (04) ◽  
pp. 397-401 ◽  
Author(s):  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SÖKMEN

The binding energy of the donor in three different shaped triple graded GaAs -( Ga , Al ) As quantum wells which is obtained by changing the depth of the central-well potential (Vo) is calculated by using a variational approach. The results have been obtained in the presence of uniform magnetic and electric fields applied along the growth direction as a function of the impurity position. In addition, we also give the binding energy of the hydrogenic donor impurity for triple square quantum wells having the same physical parameters with triple graded quantum well structures in order to see the effect of different geometric confinements on the donor impurity binding energy.


2006 ◽  
Vol 20 (18) ◽  
pp. 1127-1134 ◽  
Author(s):  
A. JOHN PETER

The binding energy of a shallow hydrogenic impurity of a spherical quantum dot confined by harmonic oscillator-like and by rectangular well-like potentials, using a variational procedure within the effective mass approximation, has been determined. The calculations of the binding energy of the donor impurity as a function of the system geometry, and the donor impurity position have been investigated. The binding energy of shallow donor impurity depends not only on the quantum confinements but also on the impurity position. Our results reveal that (i) the donor binding energy decreases as the dot size increases irrespective of the impurity position, and (ii) the binding energy values of rectangular confinement are larger than the values of parabolic confinement and (iii) the rectangular confinement is better than the parabolic confinement in a spherical quantum dot.


1997 ◽  
Vol 229 (2) ◽  
pp. 117-120
Author(s):  
Chengxin Wang ◽  
Baibiao Huang ◽  
Minhua Jiang

2011 ◽  
Vol 25 (32) ◽  
pp. 2451-2459 ◽  
Author(s):  
U. YESILGUL ◽  
F. UNGAN ◽  
E. KASAPOGLU ◽  
H. SARI ◽  
I. SÖKMEN

The intersubband transitions and impurity binding energy in differently shaped semiconductor quantum wells under a magnetic field are calculated using a variational method within the effective mass approximation. Our calculations have revealed the dependence of the intersubband transitions and impurity binding energy on the magnetic field strength and the shape of the quantum wells.


2021 ◽  
Author(s):  
E. B. Al ◽  
E. Kasapoglu ◽  
H. Sari ◽  
I. Sökmen ◽  
C. A. Duque

Abstract In this study, the electronic and optical properties of single or core/shell quantum dots, which are formed depending on the parameters in the selected Konwent potential, are investigated. Namely, the effects of the size and geometric shapes of quantum dots on the binding energy of the on-center donor impurity, the total absorption coefficient and refractive index which are including transitions between the some confined states, and the electromagnetically induced transparency between the lowest six confined states related to the donor impurity are investigated. We have used the diagonalization method by choosing a wave function based on the Bessel and Spherical Harmonics orthonormal function to find the eigenvalues and eigenfunctions of the electron confined within the quantum dots which have different types mentioned above. To calculate the optical absorption coefficients and electromagnetically induced transparency related to shallow-donor impurity, a two- and three-level approach in the density matrix expansion is used, respectively.


Sign in / Sign up

Export Citation Format

Share Document