Optical bandgaps, level crossings and Berry phase in a rotating Sagnac Interferometer

2021 ◽  
Author(s):  
Hemanth Srinivasan ◽  
Nirmal K. Viswanathan
1981 ◽  
Vol 9 (1) ◽  
pp. 19-25 ◽  
Author(s):  
G. S. Ludwig ◽  
F. C. Brenner

Abstract Belted bias and radial Course Monitoring Tires were run over the National Highway Traffic Safety Administration tread wear course at San Angelo on a vehicle instrumented to measure lateral and longitudinal accelerations, speed, and number of wheel rotations. The data were recorded as histograms. The distribution of speed, the distributions of lateral and longitudinal acceleration, and the number of acceleration level crossings are given. Acceleration data for segments of the course are also given.


Author(s):  
Dragan Pamučar ◽  
◽  
Vesko Lukovac ◽  
Darko Božanić ◽  
Nenad Komazec ◽  
...  
Keyword(s):  

1985 ◽  
Author(s):  
Michael Aronowich ◽  
Robert J. Adler
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Fei Wang ◽  
Xuepeng Wang ◽  
Yi-Fan Zhao ◽  
Di Xiao ◽  
Ling-Jie Zhou ◽  
...  

AbstractThe Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry curvature in momentum space. Here, we fabricate TI/magnetic TI heterostructures and find that the sign of the AH effect in the magnetic TI layer can be changed from being positive to negative with increasing the thickness of the top TI layer. Our first-principles calculations show that the built-in electric fields at the TI/magnetic TI interface influence the band structure of the magnetic TI layer, and thus lead to a reconstruction of the Berry curvature in the heterostructure samples. Based on the interface-induced AH effect with a negative sign in TI/V-doped TI bilayer structures, we create an artificial “topological Hall effect”-like feature in the Hall trace of the V-doped TI/TI/Cr-doped TI sandwich heterostructures. Our study provides a new route to create the Berry curvature change in magnetic topological materials that may lead to potential technological applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farhan Ali ◽  
Serap Aksu

AbstractThe investigation on metalenses have been rapidly developing, aiming to bring compact optical devices with superior properties to the market. Realizing miniature optics at the UV frequency range in particular has been challenging as the available transparent materials have limited range of dielectric constants. In this work we introduce a low absorption loss and low refractive index dielectric material magnesium oxide, MgO, as an ideal candidate for metalenses operating at UV frequencies. We theoretically investigate metalens designs capable of efficient focusing over a broad UV frequency range (200–400 nm). The presented metalenses are composed of sub-wavelength MgO nanoblocks, and characterized according to the geometric Pancharatnam–Berry phase method using FDTD method. The presented broadband metalenses can focus the incident UV light on tight focal spots (182 nm) with high numerical aperture ($$\hbox {NA}\approx 0.8$$ NA ≈ 0.8 ). The polarization conversion efficiency of the metalens unit cell and focusing efficiency of the total metalens are calculated to be as high as 94%, the best value reported in UV range so far. In addition, the metalens unit cell can be hybridized to enable lensing at multiple polarization states. The presented highly efficient MgO metalenses can play a vital role in the development of UV nanophotonic systems and could pave the way towards the world of miniaturization.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Tao Zhan ◽  
En-Lin Hsiang ◽  
Kun Li ◽  
Shin-Tson Wu

We demonstrate a light efficient virtual reality (VR) near-eye display (NED) design based on a directional display panel and a diffractive deflection film (DDF). The DDF was essentially a high-efficiency Pancharatnam-Berry phase optical element made of liquid crystal polymer. The essence of this design is directing most of the display light into the eyebox. The proposed method is applicable for both catadioptric and dioptric VR lenses. A proof-of-concept experiment was conducted with off-the-shelf optical parts, where the light efficiency was enhanced by more than 2 times.


2021 ◽  
pp. 2000576
Author(s):  
Fuyong Yue ◽  
A. Aadhi ◽  
Riccardo Piccoli ◽  
Vincenzo Aglieri ◽  
Roberto Macaluso ◽  
...  

2021 ◽  
Vol 126 (8) ◽  
Author(s):  
Wenguo Zhu ◽  
Huadan Zheng ◽  
Yongchun Zhong ◽  
Jianhui Yu ◽  
Zhe Chen

Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 586
Author(s):  
Chen-Yi Yu ◽  
Qiu-Chun Zeng ◽  
Chih-Jen Yu ◽  
Chien-Yuan Han ◽  
Chih-Ming Wang

In this study, the phase modulation ability of a dielectric Pancharatnam–Berry (PB) phase metasurface, consisting of nanofins, is theoretically analyzed. It is generally considered that the optical thickness of the unit cell of a PB-phase metasurface is λ/2, i.e., a half-waveplate for polarization conversion. It is found that the λ/2 is not essential for achieving a full 2π modulation. Nevertheless, a λ/2 thickness is still needed for a high polarization conversion efficiency. Moreover, a gradient phase metasurface is designed. With the help of the particle swarm optimization (PSO) method, the wavefront errors of the gradient phase metasurface are reduced by fine-tuning the rotation angle of the nanofins. The diffraction efficiency of the gradient phase metasurface is thus improved from 73.4% to 87.3%. This design rule can be utilized to optimize the efficiency of phase-type meta-devices, such as meta-deflectors and metalenses.


Sign in / Sign up

Export Citation Format

Share Document