Study on frost heave solution of seasonal frozen soil railway subgrade in alpine region

2021 ◽  
Author(s):  
Zhenyong Liu ◽  
Haibao He ◽  
Huan Yang
2021 ◽  
Vol 329 ◽  
pp. 01090
Author(s):  
Liqing Liang

The frozen soil area in China is more than two thirds of the total territory, so the problem of frost heave is obvious. Especially in northeast, northwest, north China and other cold regions, the problem of frost heave of hydraulic structures is very common. Canal is a common hydraulic structure in agricultural water, which is affected by seasonal frozen soil and may cause problems such as lining damage, seepage and irrigation efficiency. Therefore, this paper mainly summarizes the necessity of research on channel freezingthawing damage, the research direction of channel freezing-thawing damage, and expounds the influence of seasonal frozen soil on freezing and thawing diseases in cold regions by taking the particle size of saturated soil based on channel as an example.


2012 ◽  
Vol 212-213 ◽  
pp. 260-263
Author(s):  
Ying Hao Wang ◽  
Shuo Li

Hetao irrigation area in Inner Mongolia is one of the four major irrigation areas in China, seasonal frozen soil is widely distributed in this area. Irrigation channel engineering experiences seriously freeze-thaw cycle many times in the long winter, its maintenance is the important and difficult point all long in irrigation channel engineering of Hetao irrigation area. For this, we analyze the moisture migration and law of frost heave characteristics of seasonal frozen soil in Hetao irrigation area.


2013 ◽  
Vol 353-356 ◽  
pp. 2445-2449
Author(s):  
Xiang Min Qu ◽  
Hua Zhong ◽  
Xiu Fen Wang ◽  
Bin Zhang

Frost heaving damage of water conservancy project is widespread. In order to research the failure problems of hydraulic soil slope in dark seasonal frozen soil region, remote monitor and manual observation is carried out combined with field test section layout, which including air temperature, earth temperature, frozen depth, the amount of frost heaving and layered water content. It is researched that the rule of frost heave parameters variation and the damage of soil slope during freeze-thaw cycling. That offers theoretical basis and reference for construction of water conservancy project and guidance for engineering practice.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tao Jiang ◽  
Jing-wen Zhu ◽  
Yi Shi

Oil and gas pipelines are critical structures. For pipelines in the seasonal frozen soil area, frost heave of the ground will result in deformation of the pipeline. If the deformation continually increases, it will seriously threaten the pipeline safety. Therefore, it is important to monitor the deformation of the pipeline in the frozen soil area. Since optic frequency–domain reflectometer (OFDR) technology has many advantages in distributed strain measurement, this paper utilized the OFDR technology to measure the distributed strain and use the plane curve reconstruction algorithm to calculate the deformed pipeline shape. To verify the feasibility of this approach, a test was conducted to simulate the pipeline deformation induced by frost heave. Test results showed that the pipeline shape can be reconstructed well via the combination of the OFDR and curve reconstruction algorithm, providing a valuable approach for pipeline deformation monitoring.


Water ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 979 ◽  
Author(s):  
Fuqiang Guo ◽  
Haibin Shi ◽  
Manjin Cheng ◽  
Wenhui Gao ◽  
Hongzhi Yang ◽  
...  

The damages resulting from frost heaving are the main causes of channel destruction in seasonal frozen soil regions. Over the years, many experimental studies have been performed regarding the channel anti-frost heaving in the Hetao irrigation area. However, there have been few experimental research studies conducted regarding the insulation and anti-frost heave effects of polystyrene boards (EPS) of different thicknesses. Therefore, in order to explore the insulation mechanism and anti-frost heave effects of precast EPS laid under the conditions of different thicknesses, an anti-frost heave test field was established in the Hetao irrigation area for the examination of the ground temperatures, frozen depths, frost heave amounts, and water content change rules. This study’s results showed that, for the laid EPS with thicknesses between 2 and 12 cm, the frost-heave reduction rate ranged from 53.2% to 92.6%; total accumulated temperature warming ranged from 248.65% to 565.93%; and the frozen depth reduction rate was between 59.8% and 75.9%. It was determined that the EPS per cm additions could effectively improve the ground temperatures at a buried depth of 30 cm by 0.78 °C, and reduce the frozen depth by 10.1 cm. Then, by comprehensively considering the positive economic and insulation effects, it was determined that the most appropriate thickness of the EPS laid under the precast concrete slabs in the Hetao irrigation area of Inner Mongolia was 8–10 cm.


Author(s):  
Yan Di ◽  
Jian Shuai ◽  
Lingzhen Kong ◽  
Xiayi Zhou

Frost heave must be considered in cases where pipelines are laid in permafrost in order to protect the pipelines from overstress and to maintain the safe operation. In this paper, a finite element model for stress/strain analysis in a pipeline subjected to differential frost heave was presented, in which the amount of frost heave is calculated using a segregation potential model and considering creep effects of the frozen soil. In addition, a computational method for the temperature field around a pipeline was proposed so that the frozen depth and temperature variation gradient could be obtained. Using the procedure proposed in this paper, stress/strain can be calculated according to the temperature on the surface of soil and in a pipeline. The result shows the characteristics of deformation and loading of a pipeline subjected to differential frost heave. In general, the methods and results in this paper can provide a reference for the design, construction and operation of pipelines in permafrost areas.


Author(s):  
Shaoyang Dong ◽  
Xiong (Bill) Yu

Frost heave can cause serious damage to civil infrastructure. For example, interactions of soil and water pipes under frozen conditions have been found to significantly accelerate pipe fracture. Frost heave may cause the retaining walls along highways to crack and even fail in cold climates. This paper describes a holistic model to simulate the temperature, stress, and deformation in frozen soil and implement a model to simulate frost heave and stress on water pipelines. The frozen soil behaviors are based on a microstructure-based random finite element model, which holistically describes the mechanical behaviors of soils subjected to freezing conditions. The new model is able to simulate bulk behaviors by considering the microstructure of soils. The soil is phase coded and therefore the simulation model only needs the corresponding parameters of individual phases. This significantly simplifies obtaining the necessary parameters for the model. The capability of the model in simulating the temperature distribution and volume change are first validated with laboratory scale experiments. Coupled thermal-mechanical processes are introduced to describe the soil responses subjected to sub-zero temperature on the ground surface. This subsequently changes the interaction modes between ground and water pipes and leads to increase of stresses on the water pipes. The effects of cracks along a water pipe further cause stress concentration, which jeopardizes the pipe’s performance and leads to failure. The combined effects of freezing ground and traffic load are further evaluated with the model.


2019 ◽  
Vol 46 (16) ◽  
pp. 9497-9508 ◽  
Author(s):  
Y. Miao ◽  
Y. Shi ◽  
H. Y. Zhuang ◽  
S. Y. Wang ◽  
H. B. Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document