Convergent-beam parallel detection x-ray diffraction system for characterizing combinatorial epitaxial thin films

Author(s):  
Kazuhiko Omote ◽  
T. Kikuchi ◽  
J. Harada ◽  
Masashi Kawasaki ◽  
Akira Ohtomo ◽  
...  
2012 ◽  
Vol 27 (18) ◽  
pp. 2447-2447 ◽  
Author(s):  
Anna Regoutz ◽  
Kelvin H.L. Zhang ◽  
Russell G. Egdell ◽  
Didier Wermeille ◽  
Roger A. Cowley

2001 ◽  
Vol 391 (1) ◽  
pp. 42-46 ◽  
Author(s):  
A. Boulle ◽  
C. Legrand ◽  
R. Guinebretière ◽  
J.P. Mercurio ◽  
A. Dauger

2004 ◽  
Vol 19 (7) ◽  
pp. 2137-2143 ◽  
Author(s):  
Hidenori Hiramatsu ◽  
Kazushige Ueda ◽  
Kouhei Takafuji ◽  
Hiromichi Ohta ◽  
Masahiro Hirano ◽  
...  

Processes and preparation conditions for growing epitaxial thin films of Cu-based, layered oxychalcogenides LnCuOCh (Ln = La, Ce, Pr or Nd; Ch = S1-xSex or Se1-yTey) are reported. Epitaxial thin films on MgO (001) substrates were prepared by a reactive solid-phase epitaxy method. Four-axes high-resolution x-ray diffraction measurements revealed that the crystallographic orientation is (001)[110] LnCuOCh || (001)[110] MgO and the internal stress of the crystalline lattices in the films are relaxed during thermal-annealing process of the reactive solid-phase epitaxy. Furthermore, except for CeCuOS, systematic variations in the lattice constant by chalcogen or lanthanide ion substitutions were observed. These results demonstrated that the reactive solid-phase epitaxy is an efficient technique for fabricating LnCuOCh epitaxial films.


2005 ◽  
Vol 20 (4) ◽  
pp. 952-958 ◽  
Author(s):  
M.D. Biegalski ◽  
J.H. Haeni ◽  
S. Trolier-McKinstry ◽  
D.G. Schlom ◽  
C.D. Brandle ◽  
...  

The thermal expansion coefficients of DyScO3 and GdScO3 were determined from298 to 1273 K using x-ray diffraction. The average thermal expansion coefficients of DyScO3 and GdScO3 were 8.4 and 10.9 ppm/K, respectively. No phase transitions were detected over this range, though the orthorhombicity decreased with increasing temperature. These thermal expansion coefficients are similar to other oxide perovskites (e.g., BaTiO3 or SrTiO3), making these rare-earth scandates promising substrates for the growth of epitaxial thin films of many oxide perovskites that have similar lattice spacing and thermal expansion coefficients.


2001 ◽  
Vol 688 ◽  
Author(s):  
H. N. Lee ◽  
D. N. Zakharov ◽  
P. Reiche ◽  
R. Uecker ◽  
D. Hesse

AbstractSrBi2Ta2O9 (SBT) epitaxial thin films having a mix of (100) and (116) orientations have been grown on SrLaGaO4(110) by pulsed laser deposition. X-ray diffraction θ2 θ and pole figure scans, and cross-sectional transmission electron microscopy (TEM) analyses revealed the presence of two epitaxial orientations, SBT(100) ∥ SLG(110); SBT[001] ∥ SLG[001] and SBT(116) ∥ SLG(110); SBT [110] ∥ SLG[001]. By calculating the integrated intensity of certain x-ray diffraction peaks, it was established that the crystallinity and the in-plane orientation of the (100) and (116) orientation are best at a substrate temperature of 775 °C and 788 °C, respectively, and that the volume fraction of the (100) orientation at about 770 °C reached about 60%. By scanning force microscopy and cross-sectional TEM investigations we found that the a-axisoriented grains are rounded and protrude out due to the rapid growth along the [110] direction, leading to a distinct difference of the surface morphology between (100)- and (116)-oriented grains.


Sign in / Sign up

Export Citation Format

Share Document