Potential applications of electroactive polymer sensors and actuators in MEMS technologies

Author(s):  
Mohsen Shahinpoor
2018 ◽  
Vol 29 (19) ◽  
pp. 3681-3695 ◽  
Author(s):  
Musavir Bashir ◽  
Parvathy Rajendran

Newfangled smart materials have inspired the researchers to look for more efficient materials that can respond to specific stimuli and retain the original shape. Electroactive polymers are such materials which are capable of sensing and real-time actuation. Various electroactive polymers are excellent candidates due to high strain rate, fast response, reliability and high mechanical compliance despite tough manufacturing. In this study, electroactive polymers are reviewed and the general enabling mechanisms employing their distinct characteristics are presented, and the factors influencing the properties of various electroactive polymers are also discussed. Our study also enumerates the current trends in the development of electroactive polymers along with its progress in aerospace discipline. The electromechanical properties of electroactive polymer materials endow them the capability to work as both sensors and actuators in the field of aerospace. Hence, we provide an overview of various applications of electroactive polymers in aerospace field, notably aircraft morphing. These actuators are vastly used in aerospace applications like Mars Nano-rover, space robotic, flapping wings and active flap. Therefore, the electroactive polymer applications such as effective actuators can be investigated more in their materials, molecular interactions, electromechanics and actuation mechanisms. Considering electroactive polymers unique properties, they will endeavour the great potential applications within aerospace industry.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 142
Author(s):  
Hu Li ◽  
Raffaello Papadakis

Graphene is a material with outstanding properties and numerous potential applications in a wide range of research and technology areas, spanning from electronics, energy materials, sensors, and actuators to life-science and many more. However, the insolubility and poor dispersibility of graphene are two major problems hampering its use in certain applications. Tethering mono-, di-, or even poly-saccharides on graphene through click-chemistry is gaining more and more attention as a key modification approach leading to new graphene-based materials (GBM) with improved hydrophilicity and substantial dispersibility in polar solvents, e.g., water. The attachment of (poly)saccharides on graphene further renders the final GBMs biocompatible and could open new routes to novel biomedical and environmental applications. In this review, recent modifications of graphene and other carbon rich materials (CRMs) through click chemistry are reviewed.


2013 ◽  
Vol 3 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Seongbum Kang ◽  
Inhwan Cha ◽  
Jeon Geon Han ◽  
Changsik Song

MRS Bulletin ◽  
2008 ◽  
Vol 33 (3) ◽  
pp. 173-181 ◽  
Author(s):  
Yoseph Bar-Cohen ◽  
Qiming Zhang

AbstractPolymers are highly attractive for their inherent properties of mechanical flexibility, light weight, and easy processing. In addition, some polymers exhibit large property changes in response to electrical stimulation, much beyond what is achievable by inorganic materials. This adds significant benefit to their potential applications.The focus of this issue of MRS Bulletin is on polymers that are electromechanically responsive, which are also known as electroactive polymers (EAPs). These polymers respond to electric field or current with strain and stress, and some of them also exhibit the reverse effect of converting mechanical motion to an electrical signal.There are many types of known polymers that respond electromechanically, and they can be divided according to their activation mechanism into field-activated and ionic EAPs. The articles in this issue cover the key material types used in these two groups, review the mechanisms that drive them, and provide examples of applications and current challenges. Recent advances in the development of these materials have led to improvement in the induced strain and force and the further application of EAPs as actuators for mimicking biologic systems and sensors. As described in this issue, the use of these actuators is enabling exciting applications that would be considered impossible otherwise.


2008 ◽  
Vol 144 ◽  
pp. 244-249 ◽  
Author(s):  
Yousef Razouk ◽  
Eric Duhayon ◽  
Bertrand Nogarede

This paper deals with the development of a new type of composites called "magnetoactivated" polymers and the exploration of some of their potential applications. "Magnetoactivated" polymers consist of small embedding (micron-sized) magnetic particles in a high elastic silicon matrix to render it magnetically active and at the same time mechanically strong. The experimental characterizations obtained (magnetic permeability and Young modulus) were systematically compared with the values resulting from the modeling of this material.The elastic properties of our "magnetoactivated" silicon motive us to use them as pump membranes, the evolution of the displacement of the pump membrane with the applied magnetic field were verified in ANSYS and experimentally for various contents of iron particles in the silicon matrix.


2021 ◽  
Vol 886 ◽  
pp. 12-29
Author(s):  
Itopa Godwin Akande ◽  
S.A. Ajayi ◽  
Muyiwa Adedapo Fajobi ◽  
Olugbemiga Oluleke Oluwole ◽  
Ojo Sunday Issac Fayomi

Conductive polymers are a class of engineering materials which possess remarkably reversible redox property and atypical combination of characteristics of plastics and metals. The potential usefulness of conductive polymers has grown exceedingly in the technological field such as telecommunication, electronics, storage systems and protective devices. The prospective of conductive polymers has further deepened the interest of researchers for their applications in several areas. Some of the popular types of conductive polymers are polythiophene, polyindole, polyacetylene, polypyrrole, polyphenyl vinylene, polyaniline, Poly (3,4ethylenedioxythiophene), which are produced via redox and chemical (CM) or electrochemical (ECM) oxidation processes. Polymers are doped to introduce charge carriers known as polarons and bipolarons into them, to make them conductive. Conductive polymers have limitations such as a poor mechanical characteristic or poor flexibility, low process-ability and poor biocompatibility, which have made researchers investigate different chemical modification methods. Conductive polymers have potential applications in the field of supercapacitors, solar cells, biosensors, chemical sensors and actuators, tissue engineering, e.t.c. This article has attempted to provide an up to date review on different aspects of conductive polymers such as production, doping, applications and conductivity of selected conductive polymers.


Sign in / Sign up

Export Citation Format

Share Document