Airborne measurement of atmospheric methane concentration using pulsed lidar

Author(s):  
Anand Ramanathan ◽  
Kenji Numata ◽  
Stewart T. Wu ◽  
Steven X. Li ◽  
Martha W. Dawsey ◽  
...  
2019 ◽  
Vol 48 (3) ◽  
pp. 762-769
Author(s):  
Victoria S. Fusé ◽  
José I. Gere ◽  
Daiana Urteaga ◽  
M. Paula Juliarena ◽  
Sergio A. Guzmán ◽  
...  

1990 ◽  
Vol 14 ◽  
pp. 359-359
Author(s):  
B. Stauffer ◽  
H. Oeschger ◽  
J. Schwander

Measurements on ice-core samples showed that atmospheric methane concentration changed with the large climatic cycles during the last two glaciations (Stauffer and others, 1988; Raynaud and others, 1988). The methane concentration is lower in cold periods and higher in warm periods. In this paper we discuss the results of CH4 measurements of samples from periods of minor climatic change, like the climatic optimum 8000 years B.P. and the Younger Dryas period about 10 000 to 11 000 years B.P.. The data are interpreted in terms of the present understanding of methane sources and sinks.


1990 ◽  
Vol 14 ◽  
pp. 359
Author(s):  
B. Stauffer ◽  
H. Oeschger ◽  
J. Schwander

Measurements on ice-core samples showed that atmospheric methane concentration changed with the large climatic cycles during the last two glaciations (Stauffer and others, 1988; Raynaud and others, 1988). The methane concentration is lower in cold periods and higher in warm periods. In this paper we discuss the results of CH4 measurements of samples from periods of minor climatic change, like the climatic optimum 8000 years B.P. and the Younger Dryas period about 10 000 to 11 000 years B.P.. The data are interpreted in terms of the present understanding of methane sources and sinks.


Science ◽  
1996 ◽  
Vol 273 (5278) ◽  
pp. 1087-1091 ◽  
Author(s):  
E. J. Brook ◽  
T. Sowers ◽  
J. Orchardo

2007 ◽  
Vol 7 (1) ◽  
pp. 237-241 ◽  
Author(s):  
D. F. Ferretti ◽  
J. B. Miller ◽  
J. W. C. White ◽  
K. R. Lassey ◽  
D. C. Lowe ◽  
...  

Abstract. Recently Keppler et al. (2006) discovered a surprising new source of methane – terrestrial plants under aerobic conditions, with an estimated global production of 62–236 Tg yr−1 by an unknown mechanism. This is ~10–40% of the annual total of methane entering the modern atmosphere and ~30–100% of annual methane entering the pre-industrial (0 to 1700 AD) atmosphere. Here we test this reported global production of methane from plants against ice core records of atmospheric methane concentration (CH4) and stable carbon isotope ratios (δ13CH4) over the last 2000 years. Our top-down approach determines that global plant emissions must be much lower than proposed by Keppler et al. (2006) during the last 2000 years and are likely to lie in the range 0–46 Tg yr−1 and 0–176 Tg yr−1 during the pre-industrial and modern eras, respectively.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
V.I. Grigorievsky ◽  
◽  
V.P. Sadovnikov ◽  
A.V. Elbakidze ◽  
◽  
...  

Local path measurements of the background methane concentration in the northeast of the Moscow Region were carried out using a remote active lidar based on a powerful Raman amplifier of optical radiation in the wavelength range of ~ 1650 nm. The radiation power in the pulse was about 3 W. The trasses were selected taking into account possible anomalous deviations of the background of atmospheric methane and included forests, gasified buildings with natural gas, a peat lake, a road with heavy traffic, a livestock farm and a solid waste landfill. The length of the distances ranged from ~ 0.6 km to ~ 3.15 km. The highest background concentration of methane was observed over a livestock farm, over a highway and a solid waste landfill, which confirms the fact of an increase in gas emissions over these facilities. Also higher methane levels were observed above of the gasified homes and the heavy traffic road, indicating a possible increase in the number of vehicles using methane as fuel and a possible leak of natural gas from pipelines supplying buildings with natural gas.


2012 ◽  
Vol 9 (5) ◽  
pp. 5471-5508 ◽  
Author(s):  
M. Baumgartner ◽  
A. Schilt ◽  
O. Eicher ◽  
J. Schmitt ◽  
J. Schwander ◽  
...  

Abstract. Reconstructions of past atmospheric methane concentrations are available from ice cores from both, Greenland and Antarctica. The difference observed between the two polar methane concentration levels is a valuable additional parameter which allows to constrain the geographical location of the responsible methane sources. Here we present new high-resolution methane records from the North Greenland Ice Core Project (NGRIP) and the European Project for Ice Coring in Antarctica (EPICA) Dronning Maud Land (EDML) ice cores covering Termination 1, the Last Glacial Maximum, and parts of the last glacial back to 32 000 years before present. Due to the high-resolution records the synchronisation between the ice cores from NGRIP and EDML is considerably improved and the interpolar concentration difference of methane is determined with unprecedented precision and temporal resolution. Relative to the mean methane concentration, we find a rather stable positive interpolar difference throughout the record with its minimum value of 3.7 ± 0.7 % between 21 900–21 200 years before present, which is higher than previously estimated in this interval close to the Last Glacial Maximum. This implies that Northern Hemisphere boreal wetland sources were never completely shut off during the peak glacial. Starting at 21 000 years before present, i.e. severval millenia prior to the transition into the Holocene, the relative interpolar difference becomes even more positive and stays at a fairly stable level of 6.5 ± 0.8 % during Termination 1. We hypothesise that the anti-correlation observed in the monsoon records from the Northern and Southern Hemispheres induces a methane source redistribution within lower latitudes, which could explain parts of the variations in the interpolar difference.


2020 ◽  
Vol 12 (19) ◽  
pp. 3199
Author(s):  
Yuanyuan Yang ◽  
Yong Wang

The monitoring of wetland methane (CH4) emission is essential in the context of global CH4 emission and climate change. The remotely sensed multitemporal Atmospheric Infrared Sounder (AIRS) CH4 data and the Breaks for Additive Season and Trend (BFAST) algorithm were used to detect atmospheric CH4 dynamics in the Zoige wetland, China between 2002 and 2018. The overall atmospheric CH4 concentration increased steadily with a rate of 5.7 ± 0.3 ppb/year. After decomposing the time-series of CH4 data using the BFAST algorithm, we found no anomalies in the seasonal and error components. The trend component increased with time, and a total of seven breaks were detected within four cells. Six were well-explained by the air temperature anomalies primarily, but one break was not. The effect of parameter h on decomposition outcomes was studied because it could influence the number of breaks in the trend component. As h increased, the number of breaks decreased. The interplays of the observations of interest, break numbers, and statistical significance should determine the h value.


Sign in / Sign up

Export Citation Format

Share Document