scholarly journals Using the BFAST Algorithm and Multitemporal AIRS Data to Investigate Variation of Atmospheric Methane Concentration over Zoige Wetland of China

2020 ◽  
Vol 12 (19) ◽  
pp. 3199
Author(s):  
Yuanyuan Yang ◽  
Yong Wang

The monitoring of wetland methane (CH4) emission is essential in the context of global CH4 emission and climate change. The remotely sensed multitemporal Atmospheric Infrared Sounder (AIRS) CH4 data and the Breaks for Additive Season and Trend (BFAST) algorithm were used to detect atmospheric CH4 dynamics in the Zoige wetland, China between 2002 and 2018. The overall atmospheric CH4 concentration increased steadily with a rate of 5.7 ± 0.3 ppb/year. After decomposing the time-series of CH4 data using the BFAST algorithm, we found no anomalies in the seasonal and error components. The trend component increased with time, and a total of seven breaks were detected within four cells. Six were well-explained by the air temperature anomalies primarily, but one break was not. The effect of parameter h on decomposition outcomes was studied because it could influence the number of breaks in the trend component. As h increased, the number of breaks decreased. The interplays of the observations of interest, break numbers, and statistical significance should determine the h value.

Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 119
Author(s):  
Antonio Fidel Santos-Hernández ◽  
Alejandro Ismael Monterroso-Rivas ◽  
Diódoro Granados-Sánchez ◽  
Antonio Villanueva-Morales ◽  
Malinali Santacruz-Carrillo

The tropical rainforest is one of the lushest and most important plant communities in Mexico’s tropical regions, yet its potential distribution has not been studied in current and future climate conditions. The aim of this paper was to propose priority areas for conservation based on ecological niche and species distribution modeling of 22 species with the greatest ecological importance at the climax stage. Geographic records were correlated with bioclimatic temperature and precipitation variables using Maxent and Kuenm software for each species. The best Maxent models were chosen based on statistical significance, complexity and predictive power, and current potential distributions were obtained from these models. Future potential distributions were projected with two climate change scenarios: HADGEM2_ES and GFDL_CM3 models and RCP 8.5 W/m2 by 2075–2099. All potential distributions for each scenario were then assembled for further analysis. We found that 14 tropical rainforest species have the potential for distribution in 97.4% of the landscape currently occupied by climax vegetation (0.6% of the country). Both climate change scenarios showed a 3.5% reduction in their potential distribution and possible displacement to higher elevation regions. Areas are proposed for tropical rainforest conservation where suitable bioclimatic conditions are expected to prevail.


2021 ◽  
Vol 33 (1) ◽  
pp. 41-49
Author(s):  
A.A. Gobir ◽  
A.A. Aliyu ◽  
A.A. Abubakar ◽  
C. Esekhaigbe ◽  
I.A. Joshua ◽  
...  

Background: Tree cutting is one of the causes of climate change and a common practice in Africa, a continent under significant threat from climate change. Therefore, climate change awareness and mitigation are vital to reducing its impacts in the region. Reforestation through planting of trees is an important carbon emission reduction strategy. This study assessed climate change awareness and related tree planting practices among household heads in a Nigerian rural community.Methods: A community-based descriptive, cross-sectional study was conducted in April 2019 among all household heads in Nasarawan Buhari community. An interviewer-administered questionnaire was used to collect data from the 104 household heads (or their representatives). Data was analyzed using SPSS (version 21.0) and statistical significance was set at p value of < 0.05.Results: The mean age of respondents was 40.6±12.6 years, and most of them (87.5%) were males. Half (50.0%) were aware of climate change, and their main source of information was radio (63.5%). Most (98.1%) used fire wood for cooking. Only a minority (27.9%) planted at least a tree in the year preceding the study. There was a statistically significant association between climate change awareness and occupation (p=0.038) but not with tree planting (p=0.827).Conclusion: The results indicated that only half of respondents were aware of climate change. There was high use of wood as cooking fuel with low tree planting. Tree planting was not associated with climate change awareness. There is therefore a need for continuous climate change education and mitigation campaign in the community.


2016 ◽  
Vol 3 (1) ◽  
pp. 1
Author(s):  
P. Setyanto ◽  
Rosenani A.B. ◽  
A.K. Makarim ◽  
Che Fauziah I. ◽  
A. Bidin ◽  
...  

Atmospheric methane (CH4) is recognized as one of the most important greenhouse gases. Methane, with some 15-30 times greater infrared-absorbing capability than CO2 on a mass basis, may account for 20% of anticipated global warming. Soils are one of the key factors, which play an important role in CH4 production and emission. However, data on CH4 emission from different soil types and the characteristics affecting CH4 production are lacking when compared to data on agronomic practices. This study was conducted to investigate the potential of CH4 production of selected soils in Java, and determine the limiting factors of CH4 production. The results showed that addition of 1% glucose to the soils led to an increase in CH4 production by more than twelve fold compared to no glucose addition. The CH4 production potential ranged between 3.21 and 112.30 mg CH4 kg-1 soil. The lowest CH4 production potential occurred in brown-grayish Grumosol, while the highest was in dark-gray Grumosol. Chemical and physical properties of the soils have great influence on CH4 production. Stepwise multiple regression analysis of CH4 production and soil characteristics showed that pH and the contents of Fe2O3, MnO2, SO4, and silt in the soil strongly influenced CH4 production. Results of this study can be used for further development of a model on CH4 emission from rice fields.


2016 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
P. Setyanto ◽  
Rosenani A.B. ◽  
A.K. Makarim ◽  
Che Fauziah I. ◽  
A. Bidin ◽  
...  

Atmospheric methane (CH4) is recognized as one of the most important greenhouse gases. Methane, with some 15-30 times greater infrared-absorbing capability than CO2 on a mass basis, may account for 20% of anticipated global warming. Soils are one of the key factors, which play an important role in CH4 production and emission. However, data on CH4 emission from different soil types and the characteristics affecting CH4 production are lacking when compared to data on agronomic practices. This study was conducted to investigate the potential of CH4 production of selected soils in Java, and determine the limiting factors of CH4 production. The results showed that addition of 1% glucose to the soils led to an increase in CH4 production by more than twelve fold compared to no glucose addition. The CH4 production potential ranged between 3.21 and 112.30 mg CH4 kg-1 soil. The lowest CH4 production potential occurred in brown-grayish Grumosol, while the highest was in dark-gray Grumosol. Chemical and physical properties of the soils have great influence on CH4 production. Stepwise multiple regression analysis of CH4 production and soil characteristics showed that pH and the contents of Fe2O3, MnO2, SO4, and silt in the soil strongly influenced CH4 production. Results of this study can be used for further development of a model on CH4 emission from rice fields.


2018 ◽  
Vol 15 (21) ◽  
pp. 6371-6386 ◽  
Author(s):  
Hinrich Schaefer ◽  
Dan Smale ◽  
Sylvia E. Nichol ◽  
Tony M. Bromley ◽  
Gordon W. Brailsford ◽  
...  

Abstract. The El Niño–Southern Oscillation (ENSO) has been suggested as a strong forcing in the methane cycle and as a driver of recent trends in global atmospheric methane mole fractions [CH4]. Such a sensitivity of the global CH4 budget to climate events would have important repercussions for climate change mitigation strategies and the accuracy of projections for future greenhouse forcing. Here, we test the impact of ENSO on atmospheric CH4 in a correlation analysis. We use local and global records of [CH4], as well as stable carbon isotopic records of atmospheric CH4 (δ13CH4), which are particularly sensitive to the combined ENSO effects on CH4 production from wetlands and biomass burning. We use a variety of nominal, smoothed, and detrended time series including growth rate records. We find that at most 36 % of the variability in [CH4] and δ13CH4 is attributable to ENSO, but only for detrended records in the southern tropics. Trend-bearing records from the southern tropics, as well as all studied hemispheric and global records, show a minor impact of ENSO, i.e. < 24 % of variability explained. Additional analyses using hydrogen cyanide (HCN) records show a detectable ENSO influence on biomass burning (up to 51 %–55 %), suggesting that it is wetland CH4 production that responds less to ENSO than previously suggested. Dynamics of the removal by hydroxyl likely counteract the variation in emissions, but the expected isotope signal is not evident. It is possible that other processes obscure the ENSO signal, which itself indicates a minor influence of the latter on global CH4 emissions. Trends like the recent rise in atmospheric [CH4] can therefore not be attributed to ENSO. This leaves anthropogenic methane sources as the likely driver, which must be mitigated to reduce anthropogenic climate change.


2019 ◽  
Vol 48 (3) ◽  
pp. 762-769
Author(s):  
Victoria S. Fusé ◽  
José I. Gere ◽  
Daiana Urteaga ◽  
M. Paula Juliarena ◽  
Sergio A. Guzmán ◽  
...  

2018 ◽  
Vol 43 (1) ◽  
pp. 165-192 ◽  
Author(s):  
Dave S. Reay ◽  
Pete Smith ◽  
Torben R. Christensen ◽  
Rachael H. James ◽  
Harry Clark

Global atmospheric methane concentrations have continued to rise in recent years, having already more than doubled since the Industrial Revolution. Further environmental change, especially climate change, in the twenty-first century has the potential to radically alter global methane fluxes. Importantly, changes in temperature, precipitation, and net primary production may induce positive climate feedback effects in dominant natural methane sources such as wetlands, soils, and aquatic ecosystems. Anthropogenic methane sources may also be impacted, with a risk of enhanced emissions from the energy, agriculture, and waste sectors. Here, we review the global sources of methane, the trends in fluxes by source and sector, and their possible evolution in response to future environmental change. We discuss ongoing uncertainties in flux estimation and projection, and highlight the great potential for multisector methane mitigation as part of wider global climate change policy.


1990 ◽  
Vol 14 ◽  
pp. 359-359
Author(s):  
B. Stauffer ◽  
H. Oeschger ◽  
J. Schwander

Measurements on ice-core samples showed that atmospheric methane concentration changed with the large climatic cycles during the last two glaciations (Stauffer and others, 1988; Raynaud and others, 1988). The methane concentration is lower in cold periods and higher in warm periods. In this paper we discuss the results of CH4 measurements of samples from periods of minor climatic change, like the climatic optimum 8000 years B.P. and the Younger Dryas period about 10 000 to 11 000 years B.P.. The data are interpreted in terms of the present understanding of methane sources and sinks.


1990 ◽  
Vol 14 ◽  
pp. 359
Author(s):  
B. Stauffer ◽  
H. Oeschger ◽  
J. Schwander

Measurements on ice-core samples showed that atmospheric methane concentration changed with the large climatic cycles during the last two glaciations (Stauffer and others, 1988; Raynaud and others, 1988). The methane concentration is lower in cold periods and higher in warm periods. In this paper we discuss the results of CH4 measurements of samples from periods of minor climatic change, like the climatic optimum 8000 years B.P. and the Younger Dryas period about 10 000 to 11 000 years B.P.. The data are interpreted in terms of the present understanding of methane sources and sinks.


2020 ◽  
Vol 12 (5) ◽  
pp. 1995 ◽  
Author(s):  
Sangdon Lee ◽  
Hyeyoung Jeon ◽  
Minkyung Kim

The effects of climate change are becoming apparent in the biosphere. In the 20th century, South Korea experienced a 1.5 °C temperature increase due to rapid industrialization and urbanization. If the changes continue, it is predicted that approximately 15–37% of animal and plant species will be endangered after 2050. Because butterflies act as a good indicator for changes in the temperature, the distribution of butterflies can be used to determine their adaptability to climate patterns. Local meteorological data for the period 1938–2011 were used from the National Forest Research Institute of Korea. Local temperature data were additionally considered among the basic information, and the distribution patterns of butterflies were analyzed for both the southern and northern regions. Southern butterflies (with northern limit) tend to increase in number with significant correlation between the temperature and number of habitats (p < 0.000), while northern butterflies (with southern limit) show no statistical significance between the temperature and number of habitats, indicating their sensitivity to temperature change. This finding is in accordance with the conclusion that southern butterflies are more susceptible to climate change when adapting to local environments and expanding their original temperature range for survival, which leads to an increase in the numbers of their habitats.


Sign in / Sign up

Export Citation Format

Share Document