Test The High Building Vibration And The Deformation During Earthquake by High Speed Camera With Moire Fringe Technique

1984 ◽  
Author(s):  
Rong-Seng Chang ◽  
Chin-Wu Lin
1972 ◽  
Vol 7 (2) ◽  
pp. 151-156 ◽  
Author(s):  
D J Hitchings ◽  
A R Luxmoore

A high-speed scanning system has been developed to locate the centres of moiré fringes along any single line. The system comprises a rotating-mirror scanner for conversion of an optical signal to electrical; this conversion is followed by peak detection, storage, and print-out electronics. Up to 20 fringes can be scanned in 1 ms. The results are printed in terms of fringe separations along the scanning line.


Author(s):  
D. Goyal ◽  
A. H. King

TEM images of cracks have been found to give rise to a moiré fringe type of contrast. It is apparent that the moire fringe contrast is observed because of the presence of a fault in a perfect crystal, and is characteristic of the fault geometry and the diffracting conditions in the TEM. Various studies have reported that the moire fringe contrast observed due to the presence of a crack in an otherwise perfect crystal is distinctive of the mode of crack. This paper describes a technique to study the geometry and mode of the cracks by comparing the images they produce in the TEM because of the effect that their displacement fields have on the diffraction of electrons by the crystal (containing a crack) with the corresponding theoretical images. In order to formulate a means of matching experimental images with theoretical ones, displacement fields of dislocations present (if any) in the vicinity of the crack are not considered, only the effect of the displacement field of the crack is considered.The theoretical images are obtained using a computer program based on the two beam approximation of the dynamical theory of diffraction contrast for an imperfect crystal. The procedures for the determination of the various parameters involved in these computations have been well documented. There are three basic modes of crack. Preliminary studies were carried out considering the simplest form of crack geometries, i. e., mode I, II, III and the mixed modes, with orthogonal crack geometries. It was found that the contrast obtained from each mode is very distinct. The effect of variation of operating conditions such as diffracting vector (), the deviation parameter (ω), the electron beam direction () and the displacement vector were studied. It has been found that any small change in the above parameters can result in a drastic change in the contrast. The most important parameter for the matching of the theoretical and the experimental images was found to be the determination of the geometry of the crack under consideration. In order to be able to simulate the crack image shown in Figure 1, the crack geometry was modified from a orthogonal geometry to one with a crack tip inclined to the original crack front. The variation in the crack tip direction resulted in the variation of the displacement vector also. Figure 1 is a cross-sectional micrograph of a silicon wafer with a chromium film on top, showing a crack in the silicon.


Author(s):  
Denys Rozumnyi ◽  
Jan Kotera ◽  
Filip Šroubek ◽  
Jiří Matas

AbstractObjects moving at high speed along complex trajectories often appear in videos, especially videos of sports. Such objects travel a considerable distance during exposure time of a single frame, and therefore, their position in the frame is not well defined. They appear as semi-transparent streaks due to the motion blur and cannot be reliably tracked by general trackers. We propose a novel approach called Tracking by Deblatting based on the observation that motion blur is directly related to the intra-frame trajectory of an object. Blur is estimated by solving two intertwined inverse problems, blind deblurring and image matting, which we call deblatting. By postprocessing, non-causal Tracking by Deblatting estimates continuous, complete, and accurate object trajectories for the whole sequence. Tracked objects are precisely localized with higher temporal resolution than by conventional trackers. Energy minimization by dynamic programming is used to detect abrupt changes of motion, called bounces. High-order polynomials are then fitted to smooth trajectory segments between bounces. The output is a continuous trajectory function that assigns location for every real-valued time stamp from zero to the number of frames. The proposed algorithm was evaluated on a newly created dataset of videos from a high-speed camera using a novel Trajectory-IoU metric that generalizes the traditional Intersection over Union and measures the accuracy of the intra-frame trajectory. The proposed method outperforms the baselines both in recall and trajectory accuracy. Additionally, we show that from the trajectory function precise physical calculations are possible, such as radius, gravity, and sub-frame object velocity. Velocity estimation is compared to the high-speed camera measurements and radars. Results show high performance of the proposed method in terms of Trajectory-IoU, recall, and velocity estimation.


Author(s):  
Bo Wang ◽  
Chi Zhang ◽  
Yuzhen Lin ◽  
Xin Hui ◽  
Jibao Li

In order to balance the low emission and wide stabilization for lean premixed prevaporized (LPP) combustion, the centrally staged layout is preferred in advanced aero-engine combustors. However, compared with the conventional combustor, it is more difficult for the centrally staged combustor to light up as the main stage air layer will prevent the pilot fuel droplets arriving at igniter tip. The goal of the present paper is to study the effect of the main stage air on the ignition of the centrally staged combustor. Two cases of the main swirler vane angle of the TeLESS-II combustor, 20 deg and 30 deg are researched. The ignition results at room inlet temperature and pressure show that the ignition performance of the 30 deg vane angle case is better than that of the 20 deg vane angle case. High-speed camera, planar laser induced fluorescence (PLIF), and computational fluids dynamics (CFD) are used to better understand the ignition results. The high-speed camera has recorded the ignition process, indicated that an initial kernel forms just adjacent the liner wall after the igniter is turned on, the kernel propagates along the radial direction to the combustor center and begins to grow into a big flame, and then it spreads to the exit of the pilot stage, and eventually stabilizes the flame. CFD of the cold flow field coupled with spray field is conducted. A verification of the CFD method has been applied with PLIF measurement, and the simulation results can qualitatively represent the experimental data in terms of fuel distribution. The CFD results show that the radial dimensions of the primary recirculation zone of the two cases are very similar, and the dominant cause of the different ignition results is the vapor distribution of the fuel. The concentration of kerosene vapor of the 30 deg vane angle case is much larger than that of the 20 deg vane angle case close to the igniter tip and along the propagation route of the kernel, therefore, the 30 deg vane angle case has a better ignition performance. For the consideration of the ignition performance, a larger main swirler vane angle of 30 deg is suggested for the better fuel distribution when designing a centrally staged combustor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fukun Wang ◽  
Jianguo Wang ◽  
Li Cai ◽  
Rui Su ◽  
Wenhan Ding ◽  
...  

AbstractTwo special cases of dart leader propagation were observed by the high-speed camera in the leader/return stroke sequences of a classical triggered lightning flash and an altitude-triggered lightning flash, respectively. Different from most of the subsequent return strokes preceded by only one leader, the return stroke in each case was preceded by two leaders occurring successively and competing in the same channel, which herein is named leader-chasing behavior. In one case, the polarity of the latter leader was opposite to that of the former leader and these two combined together to form a new leader, which shared the same polarity with the former leader. In the other case, the latter leader shared the same polarity with the former leader and disappeared after catching up with the former leader. The propagation of the former leader in this case seems not to be significantly influenced by the existence of the latter leader.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1229
Author(s):  
Hongtao Zhang ◽  
Zhihua Wang ◽  
Yong He ◽  
Jie Huang ◽  
Kefa Cen

To improve our understanding of the interactive effects in combustion of binary multicomponent fuel droplets at sub-atmospheric pressure, combustion experiments were conducted on two fibre-supported RP-3 kerosene droplets at pressures from 0.2 to 1.0 bar. The burning life of the interactive droplets was recorded by a high-speed camera and a mirrorless camera. The results showed that the flame propagation time from burning droplet to unburned droplet was proportional to the normalised spacing distance between droplets and the ambient pressure. Meanwhile, the maximum normalised spacing distance from which the left droplet can be ignited has been investigated under different ambient pressure. The burning rate was evaluated and found to have the same trend as the single droplet combustion, which decreased with the reduction in the pressure. For every experiment, the interactive coefficient was less than one owing to the oxygen competition, except for the experiment at L/D0 = 2.5 and P = 1.0 bar. During the interactive combustion, puffing and microexplosion were found to have a significant impact on secondary atomization, ignition and extinction.


2019 ◽  
Vol 47 (2) ◽  
pp. 1487-1491 ◽  
Author(s):  
Hai-Guang Zhang ◽  
Zhong-Xi Ning ◽  
Yong-Jie Ding ◽  
Xi-Ming Zhu ◽  
Bin-Hao Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document