SU-F-BRD-13: A Phenomenological Relative Biological Effectiveness (RBE) Model for Proton Therapy Based On All Published in Vitro Cell Survival Data

2015 ◽  
Vol 42 (6Part25) ◽  
pp. 3528-3528
Author(s):  
A McNamara ◽  
J Schuemann ◽  
H Paganetti
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Ramin Abolfath ◽  
Christopher R. Peeler ◽  
Mark Newpower ◽  
Lawrence Bronk ◽  
David Grosshans ◽  
...  

2019 ◽  
Vol 18 ◽  
pp. 153303381987130
Author(s):  
Francois Chevalier ◽  
Dounia Houria Hamdi ◽  
Charlotte Lepleux ◽  
Mihaela Temelie ◽  
Anaïs Nicol ◽  
...  

Chondrosarcomas are malignant tumors of the cartilage that are chemoresistant and radioresistant to X-rays. This restricts the treatment options essential to surgery. In this study, we investigated the sensitivity of chondrosarcoma to X-rays and C-ions in vitro. The sensitivity of 4 chondrosarcoma cell lines (SW1353, CH2879, OUMS27, and L835) was determined by clonogenic survival assays and cell cycle progression. In addition, biomarkers of DNA damage responses were analyzed in the SW1353 cell line. Chondrosarcoma cells showed a heterogeneous sensitivity toward irradiation. Chondrosarcoma cell lines were more sensitive to C-ions exposure compared to X-rays. Using D10 values, the relative biological effectiveness of C-ions was higher (relative biological effectiveness = 5.5) with cells resistant to X-rays (CH2879) and lower (relative biological effectiveness = 3.7) with sensitive cells (L835). C-ions induced more G2 phase blockage and micronuclei in SW1353 cells as compared to X-rays with the same doses. Persistent unrepaired DNA damage was also higher following C-ions irradiation. These results indicate that chondrosarcoma cell lines displayed a heterogeneous response to conventional radiation treatment; however, treatment with C-ions irradiation was more efficient in killing chondrosarcoma cells, compared to X-rays.


2020 ◽  
Vol 47 (8) ◽  
pp. 3691-3702 ◽  
Author(s):  
Elisabeth Mara ◽  
Monika Clausen ◽  
Suphalak Khachonkham ◽  
Simon Deycmar ◽  
Clara Pessy ◽  
...  

2020 ◽  
Vol 93 (1112) ◽  
pp. 20190949 ◽  
Author(s):  
Oleg N. Vassiliev ◽  
Christine B. Peterson ◽  
David R. Grosshans ◽  
Radhe Mohan

Objectives: The relative biological effectiveness (RBE) of X-rays and γ radiation increases substantially with decreasing beam energy. This trend affects the efficacy of medical applications of this type of radiation. This study was designed to develop a model based on a survey of experimental data that can reliably predict this trend. Methods: In our model, parameters α and β of a cell survival curve are simple functions of the frequency-average linear energy transfer (LF) of delta electrons. The choice of these functions was guided by a microdosimetry-based model. We calculated LF by using an innovative algorithm in which LF is associated with only those electrons that reach a sensitive-to-radiation volume (SV) within the cell. We determined model parameters by fitting the model to 139 measured (α,β) pairs. Results: We tested nine versions of the model. The best agreement was achieved with [Formula: see text] and β being linear functions of [Formula: see text] .The estimated SV diameter was 0.1–1 µm. We also found that α, β, and the α/β ratio increased with increasing [Formula: see text] . Conclusions: By combining an innovative method for calculating [Formula: see text] with a microdosimetric model, we developed a model that is consistent with extensive experimental data involving photon energies from 0.27 keV to 1.25 MeV. Advances in knowledge: We have developed a photon RBE model applicable to an energy range from ultra-soft X-rays to megaelectron volt γ radiation, including high-dose levels where the RBE cannot be calculated as the ratio of α values. In this model, the ionization density represented by [Formula: see text] determines the RBE for a given photon spectrum.


Sign in / Sign up

Export Citation Format

Share Document