Time reversal of parametrical driving and the stability of the parametrically excited pendulum

2009 ◽  
Vol 77 (2) ◽  
pp. 164-168 ◽  
Author(s):  
Ralf Stannarius
2003 ◽  
Vol 114 (4) ◽  
pp. 2402-2402
Author(s):  
G. F. Edelmann ◽  
S. Kim ◽  
W. S. Hodgkiss ◽  
W. A. Kuperman ◽  
H. C. Song

1988 ◽  
Vol 186 ◽  
pp. 119-127 ◽  
Author(s):  
John Miles

Luke's (1967) variational formulation for surface waves is extended to incorporate the motion of a wavemaker and applied to the cross-wave problem. Whitham's average-Lagrangian method then is invoked to obtain the evolution equations for the slowly varying complex amplitude of the parametrically excited cross-wave that is associated with symmetric excitation of standing waves in a rectangular tank of width π/k, length l and depth d for which kl = O(1) and kd [Gt ] 1. These evolution equations are Hamiltonian and isomorphic to those for parametric excitation of surface waves in a cylinder that is subjected to a vertical oscillation, for which phase-plane trajectories, stability criteria and the effects of damping are known (Miles 1984a). The formulation and results differ from those of Garrett (1970) in consequence of his linearization of the boundary condition at the wavemaker and his neglect of self-interaction of the cross-waves in the free-surface conditions (although Garrett does incorporate self-interaction in his calculation of the equilibrium amplitude of the cross-waves). These differences have only a small effect on the criterion for the stability of plane waves, but the self-interaction is crucial for the determination of the stability of the cross-waves.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750018 ◽  
Author(s):  
Yuchun Li ◽  
Lishi Wang ◽  
Yanqing Yu

In this paper, the energy exponent is used to study the instability of parametrically excited systems governed by the damped Mathieu equation. Through the numerical tests, an energy-growth exponent (EGE) is adopted to evaluate the instability intensity and instability boundary of the system. The EGE can be expressed as a product of the modal frequency and a dimensionless coefficient, defined as the energy-growth coefficient (EGC). Based on the Floquet theory, the relationship between the EGE, Floquet exponent and Lyapunov exponent are derived. An energy criterion of parametric instability is proposed by using the EGE. Using a simple pendulum as an example, the geometric characteristics of the EGC are investigated, and approximate analytical formulae of the EGC/EGE for three different unstable patterns are developed. The EGC/EGE formulae are applicable to the parametrically excited systems governed by the damped Mathieu equation. The unstable behaviors and properties of parametric vibrations are analyzed and discussed in details with EGE/EGC for three systems including a triple pendulum, two-dimensional sloshing fluid, and a two-span continuous beam. The stability boundaries established by using EGE/EGC agree well with those by the conventional theory and experiment. As a practical tool, the EGE/EGC formulae can be easily applied to analyzing the unstable intensities and boundaries of the parametrically excited systems.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. V. Yurkevich ◽  
V. Kagalovsky

AbstractWe study the stability of multiple conducting edge states in a topological insulator against perturbations allowed by the time-reversal symmetry. A system is modeled as a multi-channel Luttinger liquid, with the number of channels equal to the number of Kramers doublets at the edge. Assuming strong interactions and weak disorder, we first formulate a low-energy effective theory for a clean translation invariant system and then include the disorder terms allowed by the time-reversal symmetry. In a clean system with N Kramers doublets, N − 1 edge states are gapped by Josephson couplings and the single remaining gapless mode describes collective motion of Cooper pairs synchronous across the channels. Disorder perturbation in this regime, allowed by the time reversal symmetry is a simultaneous backscattering of particles in all N channels. Its relevance depends strongly on the parity if the number of channel N is not very large. Our main result is that disorder becomes irrelevant with the increase of the number of edge modes leading to the stability of the edge states superconducting regime even for repulsive interactions.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Ashu Sharma ◽  
S. C. Sinha

In most parametrically excited systems, stability boundaries cross each other at several points to form closed unstable subregions commonly known as “instability pockets.” The first aspect of this study explores some general characteristics of these instability pockets and their structural modifications in the parametric space as damping is induced in the system. Second, the possible destabilization of undamped systems due to addition of damping in parametrically excited systems has been investigated. The study is restricted to single degree-of-freedom systems that can be modeled by Hill and quasi-periodic (QP) Hill equations. Three typical cases of Hill equation, e.g., Mathieu, Meissner, and three-frequency Hill equations, are analyzed. State transition matrices of these equations are computed symbolically/analytically over a wide range of system parameters and instability pockets are observed in the stability diagrams of Meissner, three-frequency Hill, and QP Hill equations. Locations of the intersections of stability boundaries (commonly known as coexistence points) are determined using the property that two linearly independent solutions coexist at these intersections. For Meissner equation, with a square wave coefficient, analytical expressions are constructed to compute the number and locations of the instability pockets. In the second part of the study, the symbolic/analytic forms of state transition matrices are used to compute the minimum values of damping coefficients required for instability pockets to vanish from the parametric space. The phenomenon of destabilization due to damping, previously observed in systems with two degrees-of-freedom or higher, is also demonstrated in systems with one degree-of-freedom.


Author(s):  
Thomas Pumhoessel ◽  
Peter Hehenberger ◽  
Klaus Zeman

The complexity of engineering systems is continuously increasing, resulting in mathematical models that become more and more computationally expensive. Furthermore, in model based design, for example, system parameters are subject of change, and therefore, the system equations have to be evaluated repeatedly. Hence, there is a need for providing reduced models which are as compact as possible, but still reflect the properties of the original model in a satisfactory manner. In this contribution, the reduction of differential equations with time-periodic coefficients, termed as parametrically excited systems, is investigated using the method of Proper Orthogonal Decomposition (POD). A reduced model is set up based on the solution of the original system for a certain parametric combination resonance of the difference type, resulting in an additional stability margin of the trivial solution. It is shown that the POD reduced model approximates the stability behavior of the original system much better than a modally reduced model even if system parameters are subject of change.


1998 ◽  
Vol 120 (4) ◽  
pp. 462-470 ◽  
Author(s):  
S. C. Sinha ◽  
Dan B. Marghitu ◽  
Dan Boghiu

In this paper the stability and control of a parametrically excited, rotating flexible beam is considered. The equations of motion for such a system contain time periodic coefficients. Floquet theory and a numerical integration are used to evaluate the stability of the linearized system. Stability charts for various sets of damping, parametric excitation, and rotation parameters are obtained. Several resonance conditions are found and it is shown that the system stability can be significantly changed due to the rotation. Such systems can be used as preliminary models for studying the flap dynamics and control of helicopter rotor blades and flexible mechanisms among other systems. To control the motion of the system, an observer based controller is designed via Lyapunov-Floquet transformation. In this approach the time periodic equations are transformed into a time invariant form, which are suitable for the application of standard time invariant controller design techniques. Simulations for several combinations of excitation and rotation parameters are shown.


Author(s):  
Arseni Goussev ◽  
Rodolfo A. Jalabert ◽  
Horacio M. Pastawski ◽  
Diego A. Wisniacki

Echoes are ubiquitous phenomena in several branches of physics, ranging from acoustics, optics, condensed matter and cold atoms to geophysics. They are at the base of a number of very useful experimental techniques, such as nuclear magnetic resonance, photon echo and time-reversal mirrors. Particularly interesting physical effects are obtained when the echo studies are performed on complex systems, either classically chaotic, disordered or many-body. Consequently, the term Loschmidt echo has been coined to designate and quantify the revival occurring when an imperfect time-reversal procedure is applied to a complex quantum system, or equivalently to characterize the stability of quantum evolution in the presence of perturbations. Here, we present the articles which discuss the work that has shaped the field in the past few years.


Sign in / Sign up

Export Citation Format

Share Document