Beam‐to‐mode conversion of a high‐frequency Gaussian P‐wave input in an elastic plate embedded in vacuum

1987 ◽  
Vol 82 (S1) ◽  
pp. S77-S77
Author(s):  
I. T. Lu ◽  
L. B. Felsen ◽  
J. M. Klosner
1982 ◽  
Vol 72 (6A) ◽  
pp. 1957-1968
Author(s):  
Mansour Niazi

abstract Two sets of observations obtained during the 15 October 1979 Imperial Valley earthquake, MS 6.9, are presented. The data suggest different dynamic characteristics of the source when viewed in different frequency bands. The first data set consists of the observed residuals of the horizontal peak ground accelerations and particle velocity from predicted values within 50 km of the fault surface. The residuals are calculated from a nonlinear regression analysis of the data (Campbell, 1981) to the following empirical relationships, PGA = A 1 ( R + C 1 ) − d 1 , PGV = A 2 ( R + C 2 ) − d 2 in which R is the closest distance to the plane of rupture. The so-calculated residuals are correlated with a positive scalar factor signifying the focusing potential at each observation point. The focusing potential is determined on the basis of the geometrical relation of the station relative to the rupture front on the fault plane. The second data set consists of the acceleration directions derived from the windowed-time histories of the horizontal ground acceleration across the El Centro Differential Array (ECDA). The horizontal peak velocity residuals and the low-pass particle acceleration directions across ECDA require the fault rupture to propagate northwestward. The horizontal peak ground acceleration residuals and the high-frequency particle acceleration directions, however, are either inconclusive or suggest an opposite direction for rupture propagation. The inconsistency can best be explained to have resulted from the incoherence of the high-frequency radiation which contributes most effectively to the registration of PGA. A test for the sensitivity of the correlation procedure to the souce location is conducted by ascribing the observed strong ground shaking to a single asperity located 12 km northwest of the hypocenter. The resulting inconsistency between the peak acceleration and velocity observations in relation to the focusing potential is accentuated. The particle velocity of Delta Station, Mexico, in either case appears abnormally high and disagrees with other observations near the southeastern end of the fault trace. From the observation of a nearly continuous counterclockwise rotation of the plane of P-wave particle motion at ECDA, the average rupture velocity during the first several seconds of source activation is estimated to be 2.0 to 3.0 km/sec. A 3 km upper bound estimate of barrier dimensions is tentatively made on the basis of the observed quasiperiodic variation of the polarization angles.


1995 ◽  
Vol 85 (4) ◽  
pp. 1244-1248
Author(s):  
Eric P. Chael ◽  
Patrick J. Leahy ◽  
Jerry A. Carter ◽  
Noël Barstow ◽  
Paul W. Pomeroy

Abstract We have measured the decay rate of high-frequency (4- to 50-Hz) P waves in the northeastern United States. We analyzed signals from 28 explosions of a 1988 USGS/AFGL/GSC refraction survey recorded at distances between 30 and 400 km. Over this range, the decay rate steadily increases from Δ−2 at 10 Hz to Δ−4 at 45 Hz. If one assumes geometric spreading of Δ−1.3, then the remaining decay is consistent with a nearly frequency-independent Q of about 1000. The results provide a useful parameterization for predicting P-wave spectra at near-regional ranges.


2009 ◽  
Vol 36 (9) ◽  
Author(s):  
Jian Zhang ◽  
Peter Gerstoft ◽  
Peter M. Shearer

1961 ◽  
Vol 16 (2) ◽  
pp. 300-304 ◽  
Author(s):  
Cesar A. Caceres ◽  
George A. Kelser ◽  
Juan Calatayud

Left and right atrial intracavitary and conventional surface leads were used to study electrocardiographic activity during the PR interval. Electronic filters were employed for analysis of wave frequency and harmonic content from 1.7 to 1700 cps. Amplifiers permitting standardization sensitivity to 500 mm/mv were used to obtain oscilloscopic tracings recorded at a paper speed of 75 mm/sec. Frequency analysis of the electrical potential recorded during P wave inscription demonstrated the presence of high-frequency content that is excluded by conventional electrocardiographic amplifiers. The high-frequency components are associated with the time of inscription of the electrocardiographic intrinsic deflection and have a relationship to the characteristics of the pressure-pulse curve. These relationships suggest that intracavitary high frequencies and the electrocardiographic intrinsic deflection originate from electrical discharges associated with initiation of contractile events. Submitted on June 6, 1960


Geophysics ◽  
2000 ◽  
Vol 65 (1) ◽  
pp. 35-45
Author(s):  
Jarrod C. Dunne ◽  
Greg Beresford ◽  
Brian L. N Kennett

We developed guidelines for building a detailed elastic depth model by using an elastic synthetic seismogram that matched both prestack and stacked marine seismic data from the Gippsland Basin (Australia). Recomputing this synthetic for systematic variations upon the depth model provided insight into how each part of the model affected the synthetic. This led to the identification of parameters in the depth model that have only a minor influence upon the synthetic and suggested methods for estimating the parameters that are important. The depth coverage of the logging run is of prime importance because highly reflective layering in the overburden can generate noise events that interfere with deeper events. A depth sampling interval of 1 m for the P-wave velocity model is a useful lower limit for modeling the transmission response and thus maintaining accuracy in the tie over a large time interval. The sea‐floor model has a strong influence on mode conversion and surface multiples and can be built using a checkshot survey or by testing different trend curves. When an S-wave velocity log is unavailable, it can be replaced using the P-wave velocity model and estimates of the Poisson ratio for each significant geological formation. Missing densities can be replaced using Gardner’s equation, although separate substitutions are required for layers known to have exceptionally high or low densities. Linear events in the elastic synthetic are sensitive to the choice of inelastic attenuation values in the water layer and sea‐floor sediments, while a simple inelastic attenuation model for the consolidated sediments is often adequate. The usefulness of a 1-D depth model is limited by misties resulting from complex 3-D structures and the validity of the measurements obtained in the logging run. The importance of such mis‐ties can be judged, and allowed for in an interpretation, by recomputing the elastic synthetic after perturbing the depth model to simulate the key uncertainties. Taking the next step beyond using simplistic modeling techniques requires extra effort to achieve a satisfactory tie to each part of a prestack seismic record. This is rewarded by the greater confidence that can then be held in the stacked synthetic tie and applications such as noise identification, data processing benchmarking, AVO analysis, and inversion.


Geophysics ◽  
1998 ◽  
Vol 63 (4) ◽  
pp. 1295-1309 ◽  
Author(s):  
Ranajit Ghose ◽  
Vincent Nijhof ◽  
Jan Brouwer ◽  
Yoshikazu Matsubara ◽  
Yasuhiro Kaida ◽  
...  

In shallow engineering‐geophysical applications, there is a lack of controlled, nondestructive, high‐resolution mapping tools, particularly for the target depth that ground‐penetrating radar cannot reach but which is too shallow for other conventional geophysical methods. For soft soil, this corresponds to a depth of 2 to 30 m. We have developed a portable, high‐frequency P-wave vibrator system that is capable of bridging this gap. As far as the important contribution of the seismic source is concerned, penetration and resolution can be individually controlled through easy modulation of the sweep signal generated by this electromagnetic vibrator. The feasibility of this system has been tested in shallow (10–50 m) to very shallow (0–10 m) applications. Seven field data sets representing varying geology, site conditions, and exploration targets are presented to illustrate the applicability. The first three examples show the potential of this portable vibrator source in shallow applications. Under favorable situations, a maximum resolution of about 20 cm for events located at 15–30 m depth could be achieved. Because high‐frequency seismic waves suffer from severe attenuation in the dry, unsaturated weathered zone, the penetration is relatively limited when the water table is deeper than 4–5 m. The fourth to seventh field examples illustrate very shallow applications at noisy, asphalt‐paved urban sites that are often encountered in civil, geotechnical, and environmental engineering projects. The prospecting targets were thin soil layers or small buried objects. On asphalt, the vibrator can produce high‐frequency energy easily. The fourth example shows high‐resolution delineation of very shallow soil structures. The last three examples present successful location of buried bodies—often small and closely spaced—in soft soil at depths of 0.5 to 5 m. We observe well‐defined reflection events of frequency exceeding 200 Hz. These results suggest that high‐frequency seismic reflection imaging using the portable vibrator system can indeed serve as a powerful, nondestructive technique for shallow to very shallow underground prospecting.


Sign in / Sign up

Export Citation Format

Share Document