Aspects of a damped surface wave in the Fourier diamond spaces. New surface wave analysis method (SWAM)

1998 ◽  
Vol 103 (5) ◽  
pp. 2901-2901 ◽  
Author(s):  
Loïc Martinez ◽  
Jean Duclos ◽  
Alain Tinel
2013 ◽  
Vol 11 (4) ◽  
pp. 435-448 ◽  
Author(s):  
L.A. Konstantaki ◽  
S. Carpentier ◽  
F. Garofalo ◽  
P. Bergamo ◽  
L.V. Socco

1996 ◽  
Vol 258 (1-4) ◽  
pp. 171-193 ◽  
Author(s):  
P. Teves-Costa ◽  
L. Matias ◽  
C.S. Oliveira ◽  
L.A. Mendes-Victor
Keyword(s):  

2021 ◽  
Author(s):  
Akash Kharita ◽  
Sagarika Mukhopadhyay

<p>The surface wave phase and group velocities are estimated by dividing the epicentral distance by phase and group travel times respectively in all the available methods, this is based on the assumptions that (1) surface waves originate at the epicentre and (2) the travel time of the particular group or phase of the surface wave is equal to its arrival time to the station minus the origin time of the causative earthquake; However, both assumptions are wrong since surface waves generate at some horizontal distance away from the epicentre. We calculated the actual horizontal distance from the focus at which they generate and assessed the errors caused in the estimation of group and phase velocities by the aforementioned assumptions in a simple isotropic single layered homogeneous half space crustal model using the example of the fundamental mode Love wave. We took the receiver locations in the epicentral distance range of 100-1000 km, as used in the regional surface wave analysis, varied the source depth from 0 to 35 Km with a step size of 5 km and did the forward modelling to calculate the arrival time of Love wave phases at each receiver location. The phase and group velocities are then estimated using the above assumptions and are compared with the actual values of the velocities given by Love wave dispersion equation. We observed that the velocities are underestimated and the errors are found to be; decreasing linearly with focal depth, decreasing inversely with the epicentral distance and increasing parabolically with the time period. We also derived empirical formulas using MATLAB curve fitting toolbox that will give percentage errors for any realistic combination of epicentral distance, time period and depths of earthquake and thickness of layer in this model. The errors are found to be more than 5% for all epicentral distances lesser than 500 km, for all focal depths and time periods indicating that it is not safe to do regional surface wave analysis for epicentral distances lesser than 500 km without incurring significant errors. To the best of our knowledge, the study is first of its kind in assessing such errors.</p>


1988 ◽  
Vol 1 (21) ◽  
pp. 23
Author(s):  
Toru Sawaragi ◽  
Ichiro Deguchi ◽  
San-Kil Park

A wave overtopping rate from a sea dike of various toe depths is formulated based on a weir model in an unidirectional flow. To evaluated the wave overtopping rate from a seadike on an artificial reef by the weir model, a numerical procedure for predicting wave transformations including the effect of forced wave breaking on the reef is constructed. After confirming the applicability of the model through experiments with regular and irregular waves, the effect of artificial reef on wave overtopping is discussed. So-called individual wave analysis method is shown to he applicable to the wave overtopping caused by irregular waves.


Author(s):  
Laura Valentina Socco ◽  
Paolo Bergamo ◽  
Daniele Boiero
Keyword(s):  

Author(s):  
A. Braathen ◽  
J. Cook ◽  
A. C. Damhaug ◽  
M. T. Rahman ◽  
O. Sævareid
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document