Case studies of troubleshooting room acoustics problems using critical listening, field measurements, and computer models

2007 ◽  
Vol 121 (5) ◽  
pp. 3152-3152
Author(s):  
Gary W. Siebein ◽  
Robert M. Lilkendey ◽  
Hyun Paek ◽  
Edwin S. Skorski
Author(s):  
Sergio ALTOMONTE ◽  
Flávia BUKZEM ◽  
Rafael CAMPAMÀ PIZARRO ◽  
Donatienne CARMON ◽  
Giovanni CIAMPI ◽  
...  

This report presents lessons learned from twenty-five worldwide real-life case studies implementing the integration of daylighting and electric lighting. The case studies were monitored with respect to energy use for lighting, visual performance, non-visual performance, and users’ satisfaction. The monitoring is largely based on field measurements, but it is also complemented with simulations and calculations where needed.


Author(s):  
Bing Xu ◽  
S. Ranji Ranjithan ◽  
Y. Richard Kim

The Asphalt Pavement Layer Condition Assessment Program (APLCAP) is developed in this research to help highway agencies assess layer conditions of asphalt pavements. APLCAP implements a new integrated procedure for condition assessment from falling-weight deflectometer (FWD) deflections. The main components of this procedure include screening of FWD raw deflections, predictions of condition indicators from FWD measurements, structural adjustments for the predicted condition indicators, and layer condition evaluation based on the adjusted condition indicators. This procedure was developed on the basis of dynamic nonlinear finite element analysis and calibrated using field measurements. The three case studies presented show that the APLCAP algorithms can predict the asphalt concrete modulus, pavement critical strains, and strengths of the base and subgrade quite well, but not the compressive strain in the aggregate base layer. Although the APLCAP procedure includes the complicated dynamic effect of FWD loading and nonlinear behavior of unbound materials, the time to obtain results from this procedure is insignificant and therefore suitable for real-time evaluation of pavement conditions.


1997 ◽  
Vol 4 (4) ◽  
pp. 229-246 ◽  
Author(s):  
Michael Vorländer

In the last decade computer simulations of sound fields in rooms have been developed for application in research and consulting. Some programs are commercially available. Most computer models are based on geometrical room acoustics and/or on statistical (radiosity) methods, thus not including wave phenomena such as diffraction. The uncertainty of typical simulation software was investigated in an international verification test in 1994 and 1995. The results were partly promising although some programs were not as reliable as the operators expected. These round robin tests have been continued until today with simulations and measurements in a concert hall in Jönköping in Sweden. In this paper the basic algorithms of room acoustical computer simulations, the verification in round robin tests and the observed accuracy and limitations are summarised. Finally, possible improvements are discussed.


1997 ◽  
Vol 4 (1) ◽  
pp. 1-20 ◽  
Author(s):  
António P.O. Carvalho ◽  
António E.J. Morgado ◽  
Luís Henrique

This study reports on subjective and objective acoustical field measurements made in a survey of 36 Catholic churches in Portugal built in the last 14 centuries. Monaural acoustical measurements (RT, EDT. C80, D50, TS and L) were taken at several source/receiver locations in each church and a group of college students was asked to judge the subjective quality of music. The listeners in each church evaluated live music performances at similar locations in each room. Evaluation sheets were used to record the listeners' overall impressions of room acoustic quality and also Loudness, Reverberance. Intimacy. Envelopment. Directionality, Balance, Clarity, Echoes and Background Noise. This paper concentrates on the relationships of the subjective parameters with the objective room acoustics measures and with the architectural features of the churches. Correlation analyses and statistical modeling identified significant relationships among the measures. For instance, linear correlation coefficients (| R|) of 0.8–0.9 were found for the relationships: Reverberance/RT and Clarity/C80; the maximum | R| found was 0.93 for Echoes/RT. Regarding architectural features the maximum | R | found was 0.87 between Intimacy and Total Volume.


Author(s):  
Shenwei Zhang ◽  
Jason Yan ◽  
Shahani Kariyawasam ◽  
Terry Huang ◽  
Mohammad Al-Amin

Pipeline integrity decisions are highly sensitive to the assessment model. A less accurate and less precise model can conservatively trigger many unnecessary actions such as excavations without providing additional safety. Therefore, a more accurate and precise model will reduce excavations and provide higher assurance of safety. This is akin to using a more precise surgical tool such as a laser for cutting out a brain tumor where you can cut closer to the edge and be assured of cutting out more of the tumor (safer) and yet cut less of the surrounding brain tissue (less conservative). This paper presents a novel model for assessing large metal-loss corrosion based on in-line inspection (ILI) or field measurement. The model described in this paper utilized an unconventional approach, namely multiple plausible profiles (P2), to idealize the shape of the corrosion, and therefore is referred to as P2 model. In contrast, all existing models use one single profile for characterizing corrosion profile, e.g. RSTRENG utilizes a single worst-case river bottom profile to characterize the shape of corrosion. The P2 model has been initially validated using fourteen (14) full scale specimen-based hydrostatic tests on pipes containing real large corrosion features. Validation results showed that the P2 model is safe, but less conservative and more precise than RSTRENG. The magnitude of reduction in conservatism depends on the corrosion morphology. On average, the P2 model achieves 15% reduction in model bias and 44% reduction in standard deviation of model error. Further validation was provided using the testing data published by PRCI and PETROBRAS. Another set of burst tests are being conducted by TransCanada as part of the continuous validation of P2 model. The effectiveness of the P2 model was demonstrated through two case studies (denoted by Case study 1 and 2). Case Study 1 included 170 external metal-loss corrosion features that were excavated from different pipeline sections, and have field-measurements using laser scan tool. Case Study 2 included 154 ILI-reported external metal-loss corrosion features with RSTRENG calculated rupture-pressure-ratio (RPR) of less than or equal to 1.25 (i.e. RPR ≤ 1.25); hence, these features were classified as immediate features. The Case Studies showed that the use of the P2 model resulted in 80% less number of ILI-reported features requiring immediate action (i.e., RPR ≤ 1.25) and 89% less number of excavated features requiring repair (e.g., sleeve or cut-out) compared to the respective number of features identified by RSTRENG-based assessment. The reduction in the number of features requiring excavation or repair is highly morphology-dependent with the highest reduction achievable for pipeline containing long and wide corrosion clusters (e.g., tape-coated pipeline). However, the P2 model is applicable to all clusters regardless of the number of individual corrosion anomalies associated with the cluster.


Sign in / Sign up

Export Citation Format

Share Document