Ultrasound‐mediated nanoparticle drug delivery in an in vivo tumor model

2006 ◽  
Vol 120 (5) ◽  
pp. 3003-3003
Author(s):  
Balasundar I. Raju ◽  
Christopher S. Hall ◽  
Miachael S. Hughes ◽  
Samuel A. Wickline ◽  
Gregory M. Lanza
2008 ◽  
Vol 8 (5) ◽  
pp. 2205-2215 ◽  
Author(s):  
Ghaleb A. Husseini ◽  
William G. Pitt

The high toxicity of potent chemotherapeutic drugs like Doxorubicin (Dox) limits the therapeutic window in which they can be applied. This window can be expanded by controlling the drug delivery in both space and time such that non-targeted tissues are not adversely affected. Recent research has shown that ultrasound (US) can be used to control the release of Dox and other hydrophobic drugs from polymeric micelles in both time and space. It has also been shown using an in vivo rat tumor model that Dox activity can be enhanced by ultrasound in one region, while in an adjacent region there is little or no effect of the drug. In this article, we review the in vivo and in vitro research being conducted in the area of using ultrasound to enhance and target micellar drug delivery to cancerous tissues. Additionally, we summarize our previously published mathematical models that attempt to represent the release and re-encapsulation phenomena of Dox from Pluronic® P105 micelles upon the application of ultrasound. The potential benefits of such controlled chemotherapy compels a thorough investigation of the role of ultrasound (US) and the mechanisms by which US accomplishes drug release and/or enhances drug potency. Therefore we will summarize our findings related to the mechanism involved in acoustically activated micellar drug delivery to tumors.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 505
Author(s):  
Guangze Yang ◽  
Yun Liu ◽  
Jisi Teng ◽  
Chun-Xia Zhao

Fluorescence labelling is often used for tracking nanoparticles, providing a convenient assay for monitoring nanoparticle drug delivery. However, it is difficult to be quantitative, as many factors affect the fluorescence intensity. Förster resonance energy transfer (FRET), taking advantage of the energy transfer from a donor fluorophore to an acceptor fluorophore, provides a distance ruler to probe NP drug delivery. This article provides a review of different FRET approaches for the ratiometric monitoring of the self-assembly and formation of nanoparticles, their in vivo fate, integrity and drug release. We anticipate that the fundamental understanding gained from these ratiometric studies will offer new insights into the design of new nanoparticles with improved and better-controlled properties.


2019 ◽  
Vol 9 (3) ◽  
pp. 20180063 ◽  
Author(s):  
Peter A. Wijeratne ◽  
Vasileios Vavourakis

The role of tumour–host mechano-biology and the mechanisms involved in the delivery of anti-cancer drugs have been extensively studied using in vitro and in vivo models. A complementary approach is offered by in silico models, which can also potentially identify the main factors affecting the transport of tumour-targeting molecules. Here, we present a generalized three-dimensional in silico modelling framework of dynamic solid tumour growth, angiogenesis and drug delivery. Crucially, the model allows for drug properties—such as size and binding affinity—to be explicitly defined, hence facilitating investigation into the interaction between the changing tumour–host microenvironment and cytotoxic and nanoparticle drugs. We use the model to qualitatively recapitulate experimental evidence of delivery efficacy of cytotoxic and nanoparticle drugs on matrix density (and hence porosity). Furthermore, we predict a highly heterogeneous distribution of nanoparticles after delivery; that nanoparticles require a high porosity extracellular matrix to cause tumour regression; and that post-injection transvascular fluid velocity depends on matrix porosity, and implicitly on the size of the drug used to treat the tumour. These results highlight the utility of predictive in silico modelling in better understanding the factors governing efficient cytotoxic and nanoparticle drug delivery.


ACS Nano ◽  
2021 ◽  
Author(s):  
Paula M. Cevaal ◽  
Abdalla Ali ◽  
Ewa Czuba-Wojnilowicz ◽  
Jori Symons ◽  
Sharon R. Lewin ◽  
...  

2019 ◽  
Vol 20 (23) ◽  
pp. 6056 ◽  
Author(s):  
Shreffler ◽  
Pullan ◽  
Dailey ◽  
Mallik ◽  
Brooks

Nanoparticles are becoming an increasingly popular tool for biomedical imaging and drug delivery. While the prevalence of nanoparticle drug-delivery systems reported in the literature increases yearly, relatively little translation from the bench to the bedside has occurred. It is crucial for the scientific community to recognize this shortcoming and re-evaluate standard practices in the field, to increase clinical translatability. Currently, nanoparticle drug-delivery systems are designed to increase circulation, target disease states, enhance retention in diseased tissues, and provide targeted payload release. To manage these demands, the surface of the particle is often modified with a variety of chemical and biological moieties, including PEG, tumor targeting peptides, and environmentally responsive linkers. Regardless of the surface modifications, the nano–bio interface, which is mediated by opsonization and the protein corona, often remains problematic. While fabrication and assessment techniques for nanoparticles have seen continued advances, a thorough evaluation of the particle’s interaction with the immune system has lagged behind, seemingly taking a backseat to particle characterization. This review explores current limitations in the evaluation of surface-modified nanoparticle biocompatibility and in vivo model selection, suggesting a promising standardized pathway to clinical translation.


Author(s):  
EL- Assal I. A. ◽  
Retnowati .

Objective of the present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir. Also study vitro and vivo drug delivery. Methods: Drug loaded SLNs (ACV-SLNs) were prepared by high pressure homogenization of aqueous surfactant solutions containing the drug-loaded lipids in the melted or in the solid state with formula optimization study (Different lipid concentration, drug loaded, homogenization / stirring speed and compritol 888ATO: drug ratio). ACV - SLN incorporated in cream base. The pH was evaluated and rheological study. Drug release was evaluated and compared with simple cream- drug, ACV – SLN with compritol 888ATO and marketed cream. The potential of SLN as the carrier for dermal delivery was studied. Results: Particle size analysis of SLNs prove small, smooth, spherical shape particle ranged from 150 to 200 nm for unloaded and from 330 to 444 nm for ACV loaded particles. The EE% for optimal formula is 72% with suitable pH for skin application. Rheological behavior is shear thinning and thixotropic. Release study proved controlled drug release for SLNs especially in formula containing compritol88 ATO. Stability study emphasized an insignificant change in SLNs properties over 6 month. In-vivo study showed significantly higher accumulation of ACV in stratum corneum, dermal layer, and receptor compartment compared with blank skin. Conclusion: AVC-loaded SLNs might be beneficial in controlling drug release, stable and improving dermal delivery of antiviral agent(s).


Author(s):  
ShirishaG. Suddala ◽  
S. K. Sahoo ◽  
M. R. Yamsani

Objective: The objective of this research work was to develop and evaluate the floating– pulsatile drug delivery system (FPDDS) of meloxicam intended for Chrono pharmacotherapy of rheumatoid arthritis. Methods: The system consisting of drug containing core, coated with hydrophilic erodible polymer, which is responsible for a lag phase for pulsatile release, top cover buoyant layer was prepared with HPMC K4M and sodium bicarbonate, provides buoyancy to increase retention of the oral dosage form in the stomach. Meloxicam is a COX-2 inhibitor used to treat joint diseases such as osteoarthritis and rheumatoid arthritis. For rheumatoid arthritis Chrono pharmacotherapy has been recommended to ensure that the highest blood levels of the drug coincide with peak pain and stiffness. Result and discussion: The prepared tablets were characterized and found to exhibit satisfactory physico-chemical characteristics. Hence, the main objective of present work is to formulate FPDDS of meloxicam in order to achieve drug release after pre-determined lag phase. Developed formulations were evaluated for in vitro drug release studies, water uptake and erosion studies, floating behaviour and in vivo radiology studies. Results showed that a certain lag time before drug release which was due to the erosion of the hydrophilic erodible polymer. The lag time clearly depends on the type and amount of hydrophilic polymer which was applied on the inner cores. Floating time and floating lag time was controlled by quantity and composition of buoyant layer. In vivo radiology studies point out the capability of the system of longer residence time of the tablets in the gastric region and releasing the drug after a programmed lag time. Conclusion: The optimized formulation of the developed system provided a lag phase while showing the gastroretension followed by pulsatile drug release that would be beneficial for chronotherapy of rheumatoid arthritis and osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document