Transient solutions of nonlinear dynamics in film blowing process accompanied by on-line crystallization

2011 ◽  
Vol 55 (2) ◽  
pp. 257-271 ◽  
Author(s):  
Joo Sung Lee ◽  
Hyun Wook Jung ◽  
Jae Chun Hyun
2008 ◽  
Author(s):  
Jae Chun Hyun ◽  
Hyun Wook Jung ◽  
Joo Sung Lee ◽  
Dong Myeong Shin ◽  
Seung Won Choi ◽  
...  

2004 ◽  
Vol 121 (2-3) ◽  
pp. 157-162 ◽  
Author(s):  
Jae Chun Hyun ◽  
Hyunchul Kim ◽  
Joo Sung Lee ◽  
Hyun-Seob Song ◽  
Hyun Wook Jung

2001 ◽  
Vol 68 (6) ◽  
pp. 880-893 ◽  
Author(s):  
E. B. Kosmatopoulos ◽  
A. W. Smyth ◽  
S. F. Masri ◽  
A. G. Chassiakos

The availability of methods for on-line estimation and identification of structures is crucial for the monitoring and active control of time-varying nonlinear structural systems. Adaptive estimation approaches that have recently appeared in the literature for on-line estimation and identification of hysteretic systems under arbitrary dynamic environments are in general model based. In these approaches, it is assumed that the unknown restoring forces are modeled by nonlinear differential equations (which can represent general nonlinear characteristics, including hysteretic phenomena). The adaptive methods estimate the parameters of the nonlinear differential equations on line. Adaptation of the parameters is done by comparing the prediction of the assumed model to the response measurement, and using the prediction error to change the system parameters. In this paper, a new methodology is presented which is not model based. The new approach solves the problem of estimating/identifying the restoring forces without assuming any model of the restoring forces dynamics, and without postulating any structure on the form of the underlying nonlinear dynamics. The new approach uses the Volterra/Wiener neural networks (VWNN) which are capable of learning input/output nonlinear dynamics, in combination with adaptive filtering and estimation techniques. Simulations and experimental results from a steel structure and from a reinforced-concrete structure illustrate the power and efficiency of the proposed method.


Author(s):  
J. Bengtsson ◽  
I. P. S. Martin ◽  
J. H. Rowland ◽  
R. Bartolini
Keyword(s):  

Author(s):  
William Krakow

In the past few years on-line digital television frame store devices coupled to computers have been employed to attempt to measure the microscope parameters of defocus and astigmatism. The ultimate goal of such tasks is to fully adjust the operating parameters of the microscope and obtain an optimum image for viewing in terms of its information content. The initial approach to this problem, for high resolution TEM imaging, was to obtain the power spectrum from the Fourier transform of an image, find the contrast transfer function oscillation maxima, and subsequently correct the image. This technique requires a fast computer, a direct memory access device and even an array processor to accomplish these tasks on limited size arrays in a few seconds per image. It is not clear that the power spectrum could be used for more than defocus correction since the correction of astigmatism is a formidable problem of pattern recognition.


Author(s):  
A.M.H. Schepman ◽  
J.A.P. van der Voort ◽  
J.E. Mellema

A Scanning Transmission Electron Microscope (STEM) was coupled to a small computer. The system (see Fig. 1) has been built using a Philips EM400, equipped with a scanning attachment and a DEC PDP11/34 computer with 34K memory. The gun (Fig. 2) consists of a continuously renewed tip of radius 0.2 to 0.4 μm of a tungsten wire heated just below its melting point by a focussed laser beam (1). On-line operation procedures were developped aiming at the reduction of the amount of radiation of the specimen area of interest, while selecting the various imaging parameters and upon registration of the information content. Whereas the theoretical limiting spot size is 0.75 nm (2), routine resolution checks showed minimum distances in the order 1.2 to 1.5 nm between corresponding intensity maxima in successive scans. This value is sufficient for structural studies of regular biological material to test the performance of STEM over high resolution CTEM.


Author(s):  
Neil Rowlands ◽  
Jeff Price ◽  
Michael Kersker ◽  
Seichi Suzuki ◽  
Steve Young ◽  
...  

Three-dimensional (3D) microstructure visualization on the electron microscope requires that the sample be tilted to different positions to collect a series of projections. This tilting should be performed rapidly for on-line stereo viewing and precisely for off-line tomographic reconstruction. Usually a projection series is collected using mechanical stage tilt alone. The stereo pairs must be viewed off-line and the 60 to 120 tomographic projections must be aligned with fiduciary markers or digital correlation methods. The delay in viewing stereo pairs and the alignment problems in tomographic reconstruction could be eliminated or improved by tilting the beam if such tilt could be accomplished without image translation.A microscope capable of beam tilt with simultaneous image shift to eliminate tilt-induced translation has been investigated for 3D imaging of thick (1 μm) biologic specimens. By tilting the beam above and through the specimen and bringing it back below the specimen, a brightfield image with a projection angle corresponding to the beam tilt angle can be recorded (Fig. 1a).


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
John F. Mansfield ◽  
Douglas C. Crawford

A method has been developed that allows on-line measurement of the thickness of crystalline materials in the analytical electron microscope. Two-beam convergent beam electron diffraction (CBED) patterns are digitized from a JEOL 2000FX electron microscope into an Apple Macintosh II microcomputer via a Gatan #673 CCD Video Camera and an Imaging Systems Technology Video 1000 frame-capture board. It is necessary to know the lattice parameters of the sample since measurements are made of the spacing of the diffraction discs in order to calibrate the pattern. The sample thickness is calculated from measurements of the spacings of the fringes that are seen in the diffraction discs. This technique was pioneered by Kelly et al, who used the two-beam dynamic theory of MacGillavry relate the deviation parameter (Si) of the ith fringe from the exact Bragg condition to the specimen thickness (t) with the equation:Where ξg, is the extinction distance for that reflection and ni is an integer.


Sign in / Sign up

Export Citation Format

Share Document