Gastrointestinal Discomfort during Intermittent High-Intensity Exercise: Effect of Carbohydrate–Electrolyte Beverage

2004 ◽  
Vol 14 (6) ◽  
pp. 673-683 ◽  
Author(s):  
Xiaocai Shi ◽  
Mary K. Horn ◽  
Kris L. Osterberg ◽  
John R. Stofan, ◽  
Jeffrey J. Zachwieja ◽  
...  

This study investigated whether different beverage carbohydrate concentration and osmolality would provoke gastrointestinal (GI) discomfort during intermittent, high-intensity exercise. Thirty-six adult and adolescent athletes were tested on separate days in a double-blind, randomized trial of 6% and 8% carbohydrate-electrolytes (CHO-E) beverages during four 12-min quarters (Q) of circuit training that included intermittent sprints, lateral hops, shuttle runs, and vertical jumps. GI discomfort and fatigue surveys were completed before the first Q and immediately after each Q. All ratings of GI discomfort were modest throughout the study. The cumulative index for GI discomfort, however, was greater for the 8% CHO-E beverage than for the 6% CHO-E beverage at Q3 and Q4 (P < 0.05). Averaging across all 4 quarters, the 8% CHO-E treatment produced significantly higher mean ratings of stomach upset and side ache. In conclusion, higher CHO concentration and osmolality in an ingested beverage provokes stomach upset and side ache.

Author(s):  
Stuart D.R. Galloway ◽  
Matthew J.E. Lott ◽  
Lindsay C. Toulouse

The present study aimed to investigate the influence of timing of preexercise carbohydrate feeding (Part A) and carbohydrate concentration (Part B) on short-duration high-intensity exercise capacity. In Part A, 17 males, and in Part B 10 males, performed a peak power output (PPO) test, two familiarization trials at 90% of PPO, and 4 (for Part A) or 3 (for Part B) experimental trials involving exercise capacity tests at 90% PPO. In Part A, the 4 trials were conducted following ingestion of a 6.4% carbohydrate/electrolyte sports drink ingested 30 (C30) or 120 (C120) minutes before exercise, or a flavor-matched placebo administered either 30 (P30) or 120 (P120) minutes before exercise. In Part B, the 3 trials were performed 30 min after ingestion of 0%, 2% or 12% carbohydrate solutions. All trials were performed in a double-blind cross-over design following and overnight fast. Dietary intake and activity in the 2 days before trials was recorded and replicated on each visit. Glucose, lactate, heart rate, and mood/arousal were recorded at intervals during the trials. In Part A, C30 produced the greatest exercise capacity (mean ± SD; 9.0 ± 1.9 min, p < .01) compared with all other trials (7.7 ± 1.5 min P30, 8.0 ± 1.7 min P120, 7.9 ± 1.9 min C120). In Part B, exercise capacity (min) following ingestion of the 2% solution (9.2 ± 2.1) compared with 0% (8.2 ± 0.7) and 12% (8.0 ± 1.3) solutions approached significance (p = .09). This study provides new evidence to suggest that timing of carbohydrate intake is important in short duration high-intensity exercise tasks, but a concentration effect requires further exploration.


1996 ◽  
Vol 81 (6) ◽  
pp. 2611-2617 ◽  
Author(s):  
Hunter Gillies ◽  
Wayne E. Derman ◽  
Timothy D. Noakes ◽  
Peter Smith ◽  
Alicia Evans ◽  
...  

Gillies, Hunter, Wayne E. Derman, Timothy D. Noakes, Peter Smith, Alicia Evans, and Gary Gabriels.Pseudoephedrine is without ergogenic effects during prolonged exercise. J. Appl. Physiol. 81(6): 2611–2617, 1996.—This study was designed to measure whether a single dose of 120 mg pseudoephedrine ingested 120 min before exercise influences performance during 1 h of high-intensity exercise. The effects of exercise on urinary excretion of the drug were also studied. Ten healthy male cyclists were tested on two occasions, separated by at least 7 days, by using a randomly assigned, double-blind, placebo-controlled, crossover design. Exercise performance was tested during a 40-km trial on a laboratory cycle ergometer, and skeletal muscle function was measured during isometric contractions. On a third occasion, subjects ingested 120 mg pseudoephedrine but did not exercise [control (C)]. Pseudoephedrine did not influence either time trial performance [drug (D) vs. placebo: 58.1 ± 1.4 (SE) vs. 58.7 ± 1.5 min] or isometric muscle function. Urinary pseudoephedrine concentrations were significantly increased 1 h after exercise (D vs. C: 114.3 ± 27.2 vs. 35.4 ± 13.1 μg/ml; P < 0.05). Peak plasma pseudoephedrine concentrations ( P < 0.05) but not time taken to reach peak plasma concentrations or the area under the plasma pseudoephedrine concentration vs. time curve was significantly increased in the total group with exercise (D vs. C). In three subjects, plasma pseudoephedrine concentrations were not influenced by exercise. Only these subjects showed increased urinary pseudoephedrine excretion during exercise. We conclude that a single therapeutic dose of pseudoephedrine did not have a measurable ergogenic effect during high-intensity exercise of 1-h duration, but plasma drug concentrations and urinary excretion were altered by exercise. These findings have practical relevance to doping control regulations in international sporting competitions.


Author(s):  
Lukas Beis ◽  
Yaser Mohammad ◽  
Chris Easton ◽  
Yannis P. Pitsiladis

Oral supplementation with glycine-arginine-α-ketoisocaproic acid (GAKIC) has previously been shown to improve exhaustive high-intensity exercise performance. There are no controlled studies involving GAKIC supplementation in well-trained subjects. The aim of the current study was to examine the effects of GAKIC supplementation on fatigue during high-intensity, repeated cycle sprints in trained cyclists. After at least 2 familiarization trials, 10 well-trained male cyclists completed 2 supramaximal sprint tests each involving 10 sprints of 10 s separated by 50-s rest intervals on an electrically braked cycle ergometer. Subjects ingested 11.2 g of GAKIC or placebo (Pl) during a period of 45 min before the 2 experimental trials, administered in a randomized and double-blind fashion. Peak power declined from the 1st sprint (M ± SD; Pl 1,332 ± 307 W, GAKIC 1,367 ± 342 W) to the 10th sprint (Pl 1,091 ± 229 W, GAKIC 1,061 ± 272 W) and did not differ between conditions (p = .88). Mean power declined from the 1st sprint (Pl 892 ± 151 W, GAKIC 892 ± 153 W) to the 10th sprint (Pl 766 ± 120 W, GAKIC 752 ± 138 W) and did not differ between conditions (p = .96). The fatigue index remained at ~38% throughout the series of sprints and did not differ between conditions (p = .99). Heart rate and ratings of perceived exertion increased from the 1st sprint to the 10th sprint and did not differ between conditions (p = .11 and p = .83, respectively). In contrast to previous studies in untrained individuals, these results suggest that GAKIC has no ergogenic effect on repeated bouts of high-intensity exercise in trained individuals.


2014 ◽  
Vol 116 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Audrey Baguet ◽  
Inge Everaert ◽  
Benito Yard ◽  
Verena Peters ◽  
Johannes Zschocke ◽  
...  

Given the ergogenic properties of β-alanyl-L-histidine (carnosine) in skeletal muscle, it can be hypothesized that elevated levels of circulating carnosine could equally be advantageous for high-intensity exercises. Serum carnosinase (CN1), the enzyme hydrolyzing the dipeptide, is highly active in the human circulation. Consequently, dietary intake of carnosine usually results in rapid degradation upon absorption, yet this is less pronounced in subjects with low CN1 activity. Therefore, acute carnosine supplementation before high-intensity exercise could be ergogenic in these subjects. In a cross-sectional study, we determined plasma CN1 activity and content in 235 subjects, including 154 untrained controls and 45 explosive and 36 middle- to long-distance elite athletes. In a subsequent double-blind, placebo-controlled, crossover study, 12 men performed a cycling capacity test at 110% maximal power output (CCT 110%) following acute carnosine (20 mg/kg body wt) or placebo supplementation. Blood samples were collected to measure CN1 content, carnosine, and acid-base balance. Both male and female explosive athletes had significantly lower CN1 activity (14% and 21% lower, respectively) and content (30% and 33% lower, respectively) than controls. Acute carnosine supplementation resulted only in three subjects in carnosinemia. The CCT 110% performance was not improved after carnosine supplementation, even when accounting for low/high CN1 content. No differences were found in acid-base balance, except for elevated resting bicarbonate following carnosine supplementation and in low CN1 subjects. In conclusion, explosive athletes have lower serum CN1 activity and content compared with untrained controls, possibly resulting from genetic selection. Acute carnosine supplementation does not improve high-intensity performance.


2017 ◽  
Vol 32 (2) ◽  
pp. 429-437 ◽  
Author(s):  
Thiago De Marchi ◽  
Vinicius Mazzochi Schmitt ◽  
Guilherme Pinheiro Machado ◽  
Juliane Souza de Sene ◽  
Camila Dallavechia de Col ◽  
...  

2020 ◽  
Vol 15 (5) ◽  
pp. 741-747 ◽  
Author(s):  
Anna E. Voskamp ◽  
Senna van den Bos ◽  
Carl Foster ◽  
Jos J. de Koning ◽  
Dionne A. Noordhof

Background: Gross efficiency (GE) declines during high-intensity exercise. Increasing extracellular buffer capacity might diminish the decline in GE and thereby improve performance. Purpose: To examine if sodium bicarbonate (NaHCO3) supplementation diminishes the decline in GE during a 2000-m cycling time trial. Methods: Sixteen male cyclists and 16 female cyclists completed 4 testing sessions including a maximal incremental test, a familiarization trial, and two 2000-m GE tests. The 2000-m GE tests were performed after ingestion of either NaHCO3 supplements (0.3 g/kg body mass) or placebo supplements (amylum solani, magnesium stearate, and sunflower oil capsules). The GE tests were conducted using a double-blind, randomized, crossover design. Power output, gas exchange, and time to complete the 2000-m time trials were recorded. Capillary blood samples were analyzed for blood bicarbonate, pH, and lactate concentration. Data were analyzed using magnitude-based inference. Results: The decrement in GE found after the 2000-m time trial was possibly smaller in the male and female groups after NaHCO3 than with placebo ingestion, with the effect in both groups combined being unclear. The effect on performance was likely trivial for males (placebo 164.2 [5.0] s, NaHCO3 164.3 [5.0] s; Δ0.1; ±0.6%), unclear for females (placebo 178.6 [4.8] s, NaHCO3 178.0 [4.3] s; Δ−0.3; ±0.5%), and very likely trivial when effects were combined. Blood bicarbonate, pH, and lactate concentration were substantially elevated from rest to pretest after NaHCO3 ingestion. Conclusions: NaHCO3 supplementation results in an unclear effect on the decrease in GE during high-intensity exercise and in a very likely trivial effect on performance.


Sign in / Sign up

Export Citation Format

Share Document