scholarly journals Longitudinal Changes in Body Composition Assessed Using DXA and Surface Anthropometry Show Good Agreement in Elite Rugby Union Athletes

Author(s):  
Adam J. Zemski ◽  
Shelley E. Keating ◽  
Elizabeth M. Broad ◽  
Gary J. Slater

Rugby union athletes have divergent body composition based on the demands of their on-field playing position and ethnicity. With an established association between physique traits and positional requirements, body composition assessment is routinely undertaken. Surface anthropometry and dual-energy X-ray absorptiometry (DXA) are the most common assessment techniques used, often undertaken synchronously. This study aims to investigate the association between DXA and surface anthropometry when assessing longitudinal changes in fat-free mass (FFM) and fat mass (FM) in rugby union athletes. Thirty-nine elite male rugby union athletes (age: 25.7 ± 3.1 years, stature: 187.6 ± 7.7 cm, and mass: 104.1 ± 12.2 kg) underwent assessment via DXA and surface anthropometry multiple times over three consecutive international seasons. Changes in the lean mass index, an empirical measure to assess proportional variation in FFM, showed large agreement with changes in DXA FFM (r = .54, standard error of the estimate = 1.5%, p < .001); the strength of association was stronger among forwards (r = .63) compared with backs (r = .38). Changes in the sum of seven skinfolds showed very large agreement with changes in DXA FM (r = .73, standard error of the estimate = 5.8%, p < .001), with meaningful differences observed regardless of ethnicity (Whites: r = .75 and Polynesians: r = .62). The lean mass index and sum of seven skinfolds were able to predict the direction of change in FFM and FM 86% and 91% of the time, respectively, when DXA change was >1 kg. Surface anthropometry measures provide a robust indication of the direction of change in FFM and FM, although caution may need to be applied when interpreting magnitude of change, particularly with FM.

1996 ◽  
Vol 6 (2) ◽  
pp. 146-164 ◽  
Author(s):  
Linda B. Houtkooper

Body composition assessment techniques provide estimates of percent body fat (%BF), fat mass (FM), and fat-free mass (FFM) based on indirect assessment models and methods. Prediction equations for %BF developed using a two-component model based on adult body composition constants will overestimate %BF in youths, especially prepubescent youths. Body composition prediction equations that have been validated and cross-validated using multiple-component criterion models which include measurements of body density and the water and mineral components of FFM provide the most accurate means for assessment of body composition in youths. Use of appropriate prediction equations and proper measurement techniques, for either bioelectrical impedance or skinfolds, results in body composition estimates with standard errors of estimate (prediction errors) of 3 to 4% BF and 2.0 to 2.5 kg of FFM. Poor measurement technique and inappropriate prediction equations will result in much larger prediction errors.


Author(s):  
Adam J. Zemski ◽  
Shelley E. Keating ◽  
Elizabeth M. Broad ◽  
Damian J. Marsh ◽  
Karen Hind ◽  
...  

During preseason training, rugby union (RU) athletes endeavor to enhance physical performance characteristics that are aligned with on-field success. Specific physique traits are associated with performance; therefore body composition assessment is routinely undertaken in elite environments. This study aimed to quantify preseason physique changes in elite RU athletes with unique morphology and divergent ethnicity. Twenty-two White and Polynesian professional RU athletes received dual-energy X-ray absorptiometry assessments at the beginning and conclusion of an 11-week preseason. Interactions between on-field playing position and ethnicity in body composition adaptations were explored, and the least significant change model was used to evaluate variations at the individual level. There were no combined interaction effects with the variables position and ethnicity and any body composition measure. After accounting for baseline body composition, Whites gained more lean mass during the preseason than Polynesians (2,425 ± 1,303 g vs. 1,115 ± 1,169 g; F = 5.4, p = .03). Significant main effects of time were found for whole body and all regional measures with fat mass decreasing (F = 31.1–52.0, p < .01), and lean mass increasing (F = 12.0–40.4, p < .01). Seventeen athletes (nine White and eight Polynesian) had a reduction in fat mass, and eight athletes (six White and two Polynesian) increased lean mass. This study describes significant and meaningful physique changes in elite RU athletes during a preseason period. Given the individualized approach applied to athletes in regard to nutrition and conditioning interventions, a similar approach to that used in this study is recommended to assess physique changes in this population.


2018 ◽  
Vol 44 (4) ◽  
pp. 315-320 ◽  
Author(s):  
Fernanda Rodrigues Fonseca ◽  
Manuela Karloh ◽  
Cintia Laura Pereira de Araujo ◽  
Cardine Martins dos Reis ◽  
Anamaria Fleig Mayer

ABSTRACT Objective: To investigate the validity of an eight-contact electrode bioelectrical impedance analysis (BIA) system within a household scale for assessing whole body composition in COPD patients. Methods: Seventeen patients with COPD (mean age = 67 ± 8 years; mean FEV1 = 38.6 ± 16.1% of predicted; and mean body mass index = 24.7 ± 5.4 kg/m2) underwent dual-energy X-ray absorptiometry (DEXA) and an eight-contact electrode BIA system for body composition assessment. Results: There was a strong inter-method correlation for fat mass (r = 0.95), fat-free mass (r = 0.93), and lean mass (r = 0.93), but the correlation was moderate for bone mineral content (r = 0.73; p < 0.01 for all). In the agreement analysis, the values between DEXA and the BIA system differed by only 0.15 kg (−6.39 to 6.70 kg), 0.26 kg (−5.96 to 6.49 kg), −0.13 kg (−0.76 to 0.50 kg), and −0.55 kg (−6.71 to 5.61 kg) for fat-free mass, lean mass, bone mineral content, and fat mass, respectively. Conclusions: The eight-contact electrode BIA system showed to be a valid tool in the assessment of whole body composition in our sample of patients with COPD.


Author(s):  
Clíodhna McHugh ◽  
Karen Hind ◽  
Aoife O'Halloran ◽  
Daniel Davey ◽  
Gareth Farrell ◽  
...  

AbstractThe purpose of this study was to investigate longitudinal body mass and body composition changes in one professional rugby union team (n=123), (i) according to position [forwards (n=58) versus backs (n=65)], analysis of players with 6 consecutive seasons of DXA scans (n=21) and, (iii) to examine differences by playing status [academy and international], over 7 years. Players [mean age: 26.8 y, body mass index: 28.9+kg.m2] received DXA scans at fourtime points within each year. A modest (but non-significant) increase in mean total mass (0.8 kg) for professional players was reflected by increased lean mass and reduced body fat mass. At all-time points, forwards had a significantly greater total mass, lean mass and body fat percentage compared to backs (p<0.05). Academy players demonstrated increased total and lean mass and decreased body fat percentage over the first 3 years of senior rugby, although this was not significant. Senior and academy international players had greater lean mass and lower body fat percentage (p<0.05) than non-international counterparts. Despite modest increases in total mass; reflected by increased lean mass and reduced fat mass, no significant changes in body mass or body composition, irrespective of playing position were apparent over 7 years.


2003 ◽  
Vol 62 (2) ◽  
pp. 521-528 ◽  
Author(s):  
J. C. K. Wells

Body composition in children is of increasing interest within the contexts of childhood obesity, clinical management of patients and nutritional programming as a pathway to adult disease. Energy imbalance appears to be common in many disease states; however, body composition is not routinely measured in patients. Traditionally, clinical interest has focused on growth or nutritional status, whereas more recent studies have quantified fat mass and lean mass. The human body changes in proportions and chemical composition during childhood and adolescence. Most of the weight gain comprises lean mass rather than fat. In general, interest has focused on percentage fat, and less attention has been paid to the way in which lean mass varies within and between individuals. In the general population secular trends in BMI have been widely reported, indicating increasing levels of childhood obesity, which have been linked to reduced physical activity. However, lower activity levels may potentially lead not only to increased fatness, but also to reduced lean mass. This issue merits further investigation. Diseases have multiple effects on body composition and may influence fat-free mass and/or fat mass. In some diseases both components change in the same direction, whereas in other diseases, the changes are contradictory and may be concealed by relatively normal weight. Improved techniques are required for clinical evaluations. Both higher fatness and reduced lean mass may represent pathways to an increased risk of adult disease.


2007 ◽  
Vol 156 (3) ◽  
pp. 395-401 ◽  
Author(s):  
B Lapauw ◽  
S Goemaere ◽  
P Crabbe ◽  
J M Kaufman ◽  
J B Ruige

Objective: The androgen receptor (AR) gene contains a CAG repeat polymorphism coding for a polyglutamine chain, the length of which is inversely correlated with AR transcriptional activity. We explored whether this polymorphism modulates the activities of testosterone (T) related to body composition in elderly men. Design: We performed cross-sectional analyses using data from a 4-year follow-up study in community-dwelling men aged 75–89 years (n=159). Methods: Body composition was assessed by dual-energy X-ray absorptiometry and its relation with T and the AR gene CAG repeat length was assessed by multiple linear regression analyses, adjusting for confounding and exploring effect modification. Results: AR gene CAG repeat length was not directly related to body composition, either with or without adjustment for confounding variables like age, weight, total T or sex hormone binding globulin (SHBG) levels. However, exploration of effect modification showed that CAG repeat length modulated the relation between T and body composition (standardized regression coefficients of interaction term: β=0.12, P<0.01 and β=−0.09, P<0.05 for fat-free mass and fat mass respectively). These results were confirmed using similar models and data of mean T, SHBG and weight of the 2 years’ preceding body composition assessment instead of data of the same year (β=0.09, P<0.05 and β=−0.09, P<0.05 respectively). Conclusion: These findings suggest that the AR gene CAG polymorphism contributes, albeit modestly, to the between-subject variation of T action on body composition in community-dwelling elderly men.


Author(s):  
Jessica M. Moon ◽  
Kayla M. Ratliff ◽  
Julia C. Blumkaitis ◽  
Patrick S. Harty ◽  
Hannah A. Zabriskie ◽  
...  

Abstract Background Large (48-g), isonitrogenous doses of rice and whey protein have previously been shown to stimulate similar adaptations to resistance training, but the impact of consuming smaller doses has yet to be compared. We evaluated the ability of 24-g doses of rice or whey protein concentrate to augment adaptations following 8 weeks of resistance training. Methods Healthy resistance-trained males (n = 24, 32.8 ± 6.7 years, 179.3 ± 8.5 cm, 87.4 ± 8.5 kg, 27.2 ± 1.9 kg/m2, 27.8 ± 6.0% fat) were randomly assigned and matched according to fat-free mass to consume 24-g doses of rice (n = 12, Growing Naturals, LLC) or whey (n = 12, NutraBio Labs, Inc.) protein concentrate for 8 weeks while completing a standardized resistance training program. Body composition (DXA), muscular strength (one-repetition maximum [1RM]) and endurance (repetitions to fatigue [RTF] at 80% 1RM) using bench press (BP) and leg press (LP) exercises along with anaerobic capacity (Wingate) were assessed before and after the intervention. Subjects were asked to maintain regular dietary habits and record dietary intake every 2 weeks. Outcomes were assessed using 2 × 2 mixed (group x time) factorial ANOVA with repeated measures on time and independent samples t-tests using the change scores from baseline. A p-value of 0.05 and 95% confidence intervals on the changes between groups were used to determine outcomes. Results No baseline differences (p > 0.05) were found for key body composition and performance outcomes. No changes (p > 0.05) in dietary status occurred within or between groups (34 ± 4 kcal/kg/day, 3.7 ± 0.77 g/kg/day, 1.31 ± 0.28 g/kg/day, 1.87 ± 0.23 g/kg/day) throughout the study for daily relative energy (34 ± 4 kcals/kg/day), carbohydrate (3.7 ± 0.77 g/kg/day), fat (1.31 ± 0.28 g/kg/day), and protein (1.87 ± 0.23 g/kg/day) intake. Significant main effects for time were revealed for body mass (p = 0.02), total body water (p = 0.01), lean mass (p = 0.008), fat-free mass (p = 0.007), BP 1RM (p = 0.02), BP volume (p = 0.04), and LP 1RM (p = 0.01). Changes between groups were similar for body mass (− 0.88, 2.03 kg, p = 0.42), fat-free mass (− 0.68, 1.99 kg, p = 0.32), lean mass (− 0.73, 1.91 kg, p = 0.37), fat mass (− 0.48, 1.02 kg, p = 0.46), and % fat (− 0.63, 0.71%, p = 0.90). No significant between group differences were seen for BP 1RM (− 13.8, 7.1 kg, p = 0.51), LP 1RM (− 38.8, 49.6 kg, p = 0.80), BP RTF (− 2.02, 0.35 reps, p = 0.16), LP RTF (− 1.7, 3.3 reps, p = 0.50), and Wingate peak power (− 72.5, 53.4 watts, p = 0.76) following the eight-week supplementation period. Conclusions Eight weeks of daily isonitrogenous 24-g doses of rice or whey protein in combination with an eight-week resistance training program led to similar changes in body composition and performance outcomes. Retroactively registered on as NCT04411173.


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Maria Nikolova ◽  
Alexander Penkov

AbstractIntroduction:Obesity has been linked with vitamin D deficiency in a number of cross-sectional studies, reviews and meta-analyses. To assess the correlations of plasma 25(OH) vitamin D levels with indices of body composition examined by DXA with an emphasis on lean and bone mass as well as on indices such as android/gynoid fat, appendicular lean mass (ALM) and appendicular lean mass index (ALMI), fat-mass indexes (FMI), fat-free mass indexes (FFMI) and the ALM-to-BMI index.Materials and Methods:62 adult subjects consented to participate – 27 men (43.5 %) and 35 women (56.5 %). Their mean age was 45.3 ± 9.5 years. Fan-beam dual-energy X-ray (DXA) body composition analysis was performed on a Lunar Prodigy Pro bone densitometer with software version 12.30. Vitamin D was measured by electro-hemi-luminescent detection as 25(OH)D Total (ECLIA, Elecsys 2010 analyzer, Roche Diagnostics). Statistical analyses were done using the SPSS 23.0 statistical package.Results:The serum 25(OH)D level was correlated significantly only to the whole body bone mineral content, the appendicular lean mass index (ALMI) and the ALM-to-BMI index, underlining a predominant role for lean and fat-free mass. Vitamin D showed a very weak correlation to % Body Fat and the Fat Mass Index (FMI) in men only. Moreover, the multiple regression equation including the associated parameters could explain only 7 % of the variation in the serum 25(OH)D levels.Discussion:Our conclusion was, that there are differences in the associations of the vitamin D levels with the different body composition indices, but these associations are generally very weak and therefore – negligible.


2011 ◽  
Vol 107 (7) ◽  
pp. 1085-1091 ◽  
Author(s):  
Andrew S. Jackson ◽  
Ian Janssen ◽  
Xuemei Sui ◽  
Timothy S. Church ◽  
Steven N. Blair

Obesity and sarcopenia are health problems associated with ageing. The present study modelled the longitudinal changes in body composition of healthy men, aged from 20 to 96 years, and evaluated the fidelity of BMI to identify age-dependent changes in fat mass and fat-free mass. The data from 7265 men with multiple body composition determinations (total observations 38 328) were used to model the age-related changes in body mass, fat mass, fat-free mass, BMI and percentage of body fat. Changes in fat mass and fat-free mass were used to evaluate the fidelity of BMI and to detect body composition changes with ageing. Linear mixed regression models showed that all trajectories of body composition with healthy ageing were quadratic. Fat mass, BMI and percentage of body fat increased from age 20 years and levelled off at approximately 80 years. Fat-free mass increased slightly from age 20 to 47 years and then declined at a non-linear rate with ageing. Levels of aerobic exercise had a positive influence on fat mass and a slight negative effect on fat-free mass. BMI and percentage of body fat were sensitive in detecting the increase in fat mass that occurred with healthy ageing, but failed to identify the loss of fat-free mass that started at age 47 years.


Sign in / Sign up

Export Citation Format

Share Document