Determinants of Peak Fat Oxidation Rates During Cycling in Healthy Men and Women

2021 ◽  
Vol 31 (3) ◽  
pp. 227-235
Author(s):  
Oliver J. Chrzanowski-Smith ◽  
Robert M. Edinburgh ◽  
Mark P. Thomas ◽  
Aaron Hengist ◽  
Sean Williams ◽  
...  

This study explored lifestyle and biological determinants of peak fat oxidation (PFO) during cycle ergometry, using duplicate measures to account for day-to-day variation. Seventy-three healthy adults (age range: 19–63 years; peak oxygen consumption ; n = 32 women]) completed trials 7–28 days apart that assessed resting metabolic rate, a resting venous blood sample, and PFO by indirect calorimetry during an incremental cycling test. Habitual physical activity (combined heart rate accelerometer) and dietary intake (weighed record) were assessed before the first trial. Body composition was assessed 2–7 days after the second identical trial by dual-energy X-ray absorptiometry scan. Multiple linear regressions were performed to identify determinants of PFO (mean of two cycle tests). A total variance of 79% in absolute PFO (g·min−1) was explained with positive coefficients for (strongest predictor), FATmax (i.e the % of that PFO occurred at), and resting fat oxidation rate (g·min−1), and negative coefficients for body fat mass (kg) and habitual physical activity level. When expressed relative to fat-free mass, 64% of variance in PFO was explained: positive coefficients for FATmax (strongest predictor), , and resting fat oxidation rate, and negative coefficients for male sex and fat mass. This duplicate design revealed that biological and lifestyle factors explain a large proportion of variance in PFO during incremental cycling. After accounting for day-to-day variation in PFO, and FATmax were strong and consistent predictors of PFO.

Circulation ◽  
2018 ◽  
Vol 137 (suppl_1) ◽  
Author(s):  
Peter T Katzmarzyk ◽  
Eric Ravussin

Introduction: African Americans (AA) experience higher rates of obesity and related disorders than the general U.S. population. It has been hypothesized that the increased risk of obesity among AA may be explained, in part, by lower levels of energy expenditure (EE) and lower levels of fat oxidation. However, many different measures of EE and substrate oxidation have been employed across previous studies. Objective: The objective of this study was to compare multiple measures of EE and substrate oxidation among White (W) and AA adults. We hypothesize that AA will have lower EE and lower fat oxidation rates than W. Methods: A sample of 12 young (ages 22 to 35 y), non-obese AA adults was recruited from the local community and pair-matched by age, sex and body mass index (BMI) to a sample of 12 W adults. Height and weight were measured and BMI was calculated (kg/m 2 ). Total fat mass (FM) and fat free mass (FFM) were measured using dual energy x-ray absorptiometry. Resting EE (REE) and respiratory quotient (RQ) were measured in a fasting state using a metabolic cart; 24-hour EE, 24-h RQ, sleep EE and sleep RQ were measured in a whole room calorimeter; and free-living total daily EE (TDEE) was measured over two weeks using doubly labelled water. Physical activity level (PAL) was computed as TDEE/REE. Differences between W and AA were determined using general linear models, adjusting for FFM. Results: The analytic sample had a mean age of 27.0 y (SD 4.3 y) and mean BMI of 22.9 kg/m 2 (SD 2.9 kg/m 2 ). There were no significant differences in age, BMI, FM or FFM between W and AA (all p>0.05). However, W had significantly higher REE (1459 vs 1305 kcal/day; p=0.001), 24-h EE (1826 versus 1737 kcal/day; p=0.02), sleep EE (1509 vs 1405 kcal/day; p=0.005); but not TDEE (2452 vs 2313 kcal/day; p=0.30) compared to AA. There were no race differences in RQ (0.83 vs 0.83; p=0.93), 24-h RQ (0.86 vs 0.88; p=0.24) or sleep RQ (0.86 vs 0.87; p=0.44). On the other hand, AA had higher PAL (1.34 vs 1.26; p=0.04) compared to W. Conclusions: Non-obese W adults demonstrated higher REE, 24-h EE, and sleep EE compared to AA, but had similar levels of free-living TDEE. It appears as though some AA adults may compensate for lower REE by increased physical activity, which may be an effective strategy to prevent weight gain and obesity.


2015 ◽  
Vol 114 (3) ◽  
pp. 489-496 ◽  
Author(s):  
Katy M. Horner ◽  
Nuala M. Byrne ◽  
Geoffrey J. Cleghorn ◽  
Neil A. King

Although a number of studies have examined the role of gastric emptying (GE) in obesity, the influences of habitual physical activity level, body composition and energy expenditure (EE) on GE have received very little consideration. In the present study, we compared GE in active and inactive males, and characterised relationships with body composition (fat mass and fat-free mass) and EE. A total of forty-four males (activen22, inactiven22; BMI 21–36 kg/m2; percentage of fat mass 9–42 %) were studied, with GE of a standardised (1676 kJ) pancake meal being assessed by the [13C]octanoic acid breath test, body composition by air displacement plethysmography, RMR by indirect calorimetry, and activity EE (AEE) by accelerometry. The results showed that GE was faster in active compared with inactive males (mean half-time (t1/2): active 157 (sd18) and inactive 179 (sd21) min,P< 0·001). When data from both groups were pooled, GEt1/2was associated with percentage of fat mass (r0·39,P< 0·01) and AEE (r− 0·46,P< 0·01). After controlling for habitual physical activity status, the association between AEE and GE remained, but not that for percentage of fat mass and GE. BMI and RMR were not associated with GE. In summary, faster GE is considered to be a marker of a habitually active lifestyle in males, and is associated with a higher AEE level and a lower percentage of fat mass. The possibility that GE contributes to a gross physiological regulation (or dysregulation) of food intake with physical activity level deserves further investigation.


2020 ◽  
Vol 45 (3) ◽  
pp. 327-335 ◽  
Author(s):  
Louise D. Clamp ◽  
Amy E. Mendham ◽  
Jacolene Kroff ◽  
Julia H. Goedecke

This 12-week exercise intervention study assessed changes in cardiorespiratory fitness (CRF), energy expenditure (EE), and substrate utilisation at rest and during exercise in obese, black South African (SA) women and explored associations with changes in body composition. Black SA women (body mass index: 30–40 kg·m−2, age: 20–35 years) were randomised into control (CTL; n = 15, maintaining usual activity) or exercise (EXE; n = 20; 12 weeks, 4 days·week−1, 40–60 min·day−1 at >70% peak heart rate) groups. Pre- and post-intervention testing included peak oxygen consumption, resting and steady state (50% peak oxygen consumption) EE, respiratory exchange, and body composition (dual-energy X-ray absorptiometry). Dietary intake (4-day) and daily step-count (ActivPAL, activPAL3c; PAL Technologies Ltd, Glasgow, UK) was collected at pre-testing and at 4, 8, and 12 weeks. EXE increased peak oxygen consumption (24.9 ± 2.4 to 27.6 ± 3.4 mL·min−1·kg−1; p < 0.001) and steady state fat oxidation rates (7.5 ± 2.5 to 9.0 ± 2.7 mg·min−1·kg−1 fat-free soft tissue mass; p = 0.003) (same relative exercise intensity). CTL remained unchanged (p > 0.05). EXE reduced proportional gynoid fat mass (percentage total fat mass, p = 0.002). Baseline resting carbohydrate oxidation rates (p = 0.036) and steady state fat oxidation rates (p = 0.021) explained 60.6% of the variability in Δgynoid fat mass (p < 0.001) in EXE. This 12-week exercise intervention improved CRF and steady state fat oxidation rates. Greater reliance on fat oxidation at baseline promoted proportional reductions in gynoid, not visceral, fat mass in response to exercise training. Novelty Combined exercise training in obese black South African women increased cardiorespiratory fitness and rates of fat oxidation during steady state exercise. Exercise training reduced proportional gynoid, not visceral, fat, potentially representing an ethnic/sex-specific response. Baseline substrate utilisation (resting and steady state exercise (50% peak oxygen uptake)) predicted changes in gynoid fat mass.


2009 ◽  
Vol 6 (1) ◽  
pp. 93-98 ◽  
Author(s):  
Julia Aparecida Devide Nogueira ◽  
Teresa Helena Macedo da Costa

Background:Body weight and composition are determined by genotype, environment, and energy balance. Physical activity or sedentary behavior have different associations with body weight, fat mass, and fat-free mass, a relationship that is not clear in adolescents. The aim of this study was to test the associations between gender, physical activity, sedentary behavior, and body composition in physically active adolescents.Methods:Weight, height, and skinfold thickness were measured in 326 physically active boys and girls age 11 to 15 years. All subjects answered a questionnaire assessing their usual daily activities for the last month. Time spent on each activity was used to estimate the physical activity level (PAL).Results:PAL was associated with body composition after adjustment for age and maturation, with differences between genders. For boys, PAL was positively and significantly associated with body mass index (BMI) and fat-free mass index (β= 0.14 and 0.15, respectively). For girls, PAL was negatively and significantly associated with BMI and fat mass index (β= −0.11 and −0.75, respectively). Sedentary behavior, expressed by hours of TV, videogame, and computer use, was not associated with any body-composition outcome for either gender.Conclusion:The accumulated amount of physical activity, but not of sedentary behavior, was related to body composition in active adolescents.


2003 ◽  
Vol 90 (6) ◽  
pp. 1133-1139 ◽  
Author(s):  
Elaine C. Rush ◽  
Lindsay D. Plank ◽  
Peter S. W. Davies ◽  
Patsy Watson ◽  
Clare R. Wall

Body fatness and the components of energy expenditure in children aged 5–14 years were investigated. In a group of seventy-nine healthy children (thirty-nine female, forty male), mean age 10·0 (sd 2·8) years, comprising twenty-seven Maori, twenty-six Pacific Island and twenty-six European, total energy expenditure (TEE) was determined over 10 d using the doubly-labelled water method. Resting metabolic rate (RMR) was measured by indirect calorimetry and physical activity level (PAL) was calculated as TEE:RMR. Fat-free mass (FFM), and hence fat mass, was derived from the 18O-dilution space using appropriate values for FFM hydration in children. Qualitative information on physical activity patterns was obtained by questionnaire. Maori and Pacific children had a higher BMI than European children (P<0·003), but % body fat was similar for the three ethnic groups. The % body fat increased with age for girls (r 0·42, P=0·008), but not for boys. Ethnicity was not a significant predictor of RMR adjusted for FFM and fat mass. TEE and PAL, adjusted for body weight and age, were higher in Maori than European children (P<0·02), with Pacific children having intermediate values. PAL was inversely correlated with % body fat in boys (r −0·43, P=0·006), but was not significantly associated in girls. The % body fat was not correlated with reported time spent inactive or outdoors. Ethnic-related differences in total and activity-related energy expenditure that might account for higher obesity rates in Maori and Pacific children were not seen. Low levels of physical activity were associated with increased body fat in boys but not in girls.


2015 ◽  
Vol 47 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Julien Verney ◽  
Chloé Schwartz ◽  
Saliha Amiche ◽  
Bruno Pereira ◽  
David Thivel

AbstractThis study aimed at comparing BIA and DXA results in assessing body composition in young adults depending on their physical activity level. Eighty healthy 19-30 years old subjects were enrolled and their body composition (Fat Mass and Fat-Free Mass) was assessed by dual-energy X-ray absorptiometry (DXA) and by a newly developed Bioelectrical Impedance Analyzer (BIA - Tanita MC780). A seven-day physical activity level was assessed using a 3-axial accelerometer. DXA-FM% and BIA-FM% were correlated (p<0.001; r= 0.852; ICC [IC95%]: 0.84 [0.75 – 0.90]; concordance coefficient: 0.844). DXA-FFM and BIA FFM were correlated (p<0.001; r=0.976; ICC [IC95%]: 0.95 [0.93 – 0.97], concordance coefficient: 0.955). DXA and BIA measurements of FM% and FFM were highly correlated in both boys and girls regardless of the physical activity level. Compared with DXA scans, newly developed bioelectrical impedance analyzers provide satisfactory fat mass and lean mass measures in healthy young women and men, despite their physical activity level.


2005 ◽  
Vol 98 (1) ◽  
pp. 160-167 ◽  
Author(s):  
Michelle C. Venables ◽  
Juul Achten ◽  
Asker E. Jeukendrup

The aim of the present study was to establish fat oxidation rates over a range of exercise intensities in a large group of healthy men and women. It was hypothesised that exercise intensity is of primary importance to the regulation of fat oxidation and that gender, body composition, physical activity level, and training status are secondary and can explain part of the observed interindividual variation. For this purpose, 300 healthy men and women (157 men and 143 women) performed an incremental exercise test to exhaustion on a treadmill [adapted from a previous protocol (Achten J, Venables MC, and Jeukendrup AE. Metabolism 52: 747–752, 2003)]. Substrate oxidation was determined using indirect calorimetry. For each individual, maximal fat oxidation (MFO) and the intensity at which MFO occurred (Fatmax) were determined. On average, MFO was 7.8 ± 0.13 mg·kg fat-free mass (FFM)−1·min−1 and occurred at 48.3 ± 0.9% maximal oxygen uptake (V̇o2 max), equivalent to 61.5 ± 0.6% maximal heart rate. MFO (7.4 ± 0.2 vs. 8.3 ± 0.2 mg·kg·FFM−1·min−1; P < 0.01) and Fatmax (45 ± 1 vs. 52 ± 1% V̇o2 max; P < 0.01) were significantly lower in men compared with women. When corrected for FFM, MFO was predicted by physical activity (self-reported physical activity level), V̇o2 max, and gender ( R2 = 0.12) but not with fat mass. Men compared with women had lower rates of fat oxidation and an earlier shift to using carbohydrate as the dominant fuel. Physical activity, V̇o2 max, and gender explained only 12% of the interindividual variation in MFO during exercise, whereas body fatness was not a predictor. The interindividual variation in fat oxidation remains largely unexplained.


2019 ◽  
Vol 106 (3) ◽  
pp. 294-304
Author(s):  
Ç Özdemir ◽  
K Özgünen ◽  
Ö Günaştı ◽  
SK Eryılmaz ◽  
A Kılcı ◽  
...  

Background and aims The aim of this study was to evaluate changes in fat oxidation rate during 40 min of continuous exercise and identify the intensity at the highest fat oxidation rate (Fatmax). Methods A total of 14 sedentary males with age, body height, weight, and BMI averages of 29.3 ± 0.7 years, 178.3 ± 1.7 cm, 81.1 ± 3.9 kg, and 25.4 ± 0.9 kg/m2, respectively, were included in the study. Fatmax was determined using an indirect calorimeter with an incremental treadmill walking test at least after 12 h of fasting. On a separate day, at least after 12 h of fasting, the participants walked for 40 min within their predetermined individual Fatmax heart rate and speed ranges. Results The initial fat oxidation rate was not sustained within the first 16 min of exercise and was reduced; however, carbohydrate oxidation reached a stable level after nearly 10 min. Conclusions In sedentary individuals, during low-intensity physical activity, fat oxidation rates may not be sustainable as expected from Fatmax testing. Therefore, when exercise is prescribed, one should consider that the fat oxidation rate might decrease in sedentary overweight individuals.


2015 ◽  
Vol 12 (9) ◽  
pp. 1304-1311 ◽  
Author(s):  
Alessandra de Carvalho Bastone ◽  
Eduardo Ferriolli ◽  
Claudine Patricia Teixeira ◽  
João Marcos Domingues Dias ◽  
Rosângela Corrêa Dias

Background:Self-reported measures of decreased aerobic fitness and low physical activity are criteria of frailty. However, research assessing aerobic fitness and physical activity levels associated with frailty is limited. Therefore, the aims of this study were to objectively assess the aerobic fitness and the physical activity level of frail and nonfrail elderly, and to examine the association between frailty, aerobic fitness and habitual physical activity.Methods:This study included 26 elderly (66 to 86 years), randomly selected. The groups (frail/nonfrail) were age and sex paired. Peak oxygen consumption, maximal walking distance and speed were assessed during the incremental shuttle walk test (ISWT). Average daily time spent in sedentary, light, moderate and hard activity, counts, number of steps and energy expenditure were measured by accelerometry.Results:All variables measured by the ISWT and accelerometer differed significantly between the groups (P < .02). All aerobic fitness and physical activity variables were significantly associated with frailty, independent of the number of chronic health conditions (P < .05).Conclusions:Frailty is associated with low peak oxygen consumption and low physical activity level. These findings could guide future clinical trials designed to evaluate the efficacy of aerobic exercises in the prevention and treatment of frailty.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Karine Moreau ◽  
Aurélie Desseix ◽  
Christine Germain ◽  
Pierre Merville ◽  
Lionel Couzi ◽  
...  

Abstract Background Weight gain (mainly gain of fat mass) occurs quickly after successful kidney transplantation and is associated with metabolic complications (alterations of glycaemic control, hyperlipidaemia). Determinants of weight gain are multifactorial and are mainly related to the transplant procedure itself (glucocorticoid use, increased appetite). In the modern era of transplantation, one challenge is to limit these metabolic alterations by promoting gain of muscle mass rather than fat mass. This prospective study was performed to assess determinants of fat mass, fat-free mass and body cell mass changes after kidney transplantation with a focus on physical activity and nutritional behaviour before and after transplantation. Methods Patients were included at the time of listing for deceased donor kidney transplantation. Body composition was determined using dual X-ray absorptiometry and bioimpedance spectroscopy to assess fat mass, fat-free mass and body cell mass (= fat-free mass − extracellular water) at the time of inclusion, 12 months later, and 1, 6, 12 and 24 months after transplantation. Recall dietary data and physical activity level were also collected. Results Eighty patients were included between 2007 and 2010. Sixty-five had a complete 24-month follow-up after kidney transplantation. Fat mass, fat-free mass and body cell mass decreased during the waiting period and early after kidney transplantation. The nadirs of body cell mass and fat-free mass occurred at 1 month and the nadir for fat mass occurred at 6 months. Maximum levels of all parameters of body composition were seen at 12 months, after which body cell mass and fat-free mass decreased, while fat mass remained stable. In multivariate analysis, male recipients, higher physical activity level and lower corticosteroid dose were significantly associated with better body cell mass recovery after kidney transplantation. Conclusions Lifestyle factors, such as physical activity level, together with low dose of corticosteroids seem to influence body composition evolution following kidney transplantation with recovery of body cell mass. Specific strategies to promote physical activity in kidney transplant recipients should be provided before and after kidney transplantation.


Sign in / Sign up

Export Citation Format

Share Document