Effects of Fed- Versus Fasted-State Aerobic Training During Ramadan on Body Composition and Some Metabolic Parameters in Physically Active Men

Author(s):  
Khaled Trabelsi ◽  
Kais el Abed ◽  
Stephen R. Stannard ◽  
Kamel Jammoussi ◽  
Khaled M. Zeghal ◽  
...  

The aim of this study was to evaluate the effects of aerobic training in a fasted versus a fed state during Ramadan on body composition and metabolic parameters in physically active men. Nineteen men were allocated to 2 groups: 10 practicing aerobic training in a fasted state (FAST) and 9 training in an acutely fed state (FED) during Ramadan. All subjects visited the laboratory for a total of 4 sessions on the following occasions: 3 days before Ramadan (Bef-R), the 15th day of Ramadan; the 29th day of Ramadan (End-R), and 21 days after Ramadan. During each session, subjects underwent anthropometric measurement, completed a dietary questionnaire, and provided fasting blood and urine samples. Body weight decreased in FAST and FED by 1.9% (p < .001) and 2.6% (p = .046), respectively. Body fat percentage decreased only in FAST by 6.2% (p = .016). FAST experienced an increase in the following parameters from Bef-R to End-R: urine specific gravity (0.64%, p = .012), urea (8.7%, p < .001), creatinine (7.5%, p < .001), uric acid (12.7%, p < .001), sodium (1.9%, p = .003), chloride (2.6%, p < .001), and high-density lipoprotein cholesterol (27.3%, p < .001). Of these parameters, only creatinine increased (5.8%, p = .004) in FED. Creatinine clearance values of FAST decreased by 8.9% (p < .001) and by 7.6% in FED (p = .01) from Bef-R to End-R. The authors conclude that aerobic training in a fasted state lowers body weight and body fat percentage. In contrast, fed aerobic training decreases only body weight. In addition, Ramadan fasting induced change in some metabolic parameters in FAST, but these changes were absent in FED.

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Monika Młodzik-Czyżewska ◽  
Anna Malinowska ◽  
Agata Chmurzynska

AbstractA link has recently been underlined between one-carbon metabolism and body weight and body composition, suggesting that folate may account for body mass determination and lipid metabolism. The aim of this study was thus to analyze whether folate intake is associated with body weight, body mass index (BMI), body fat percentage, and liver status.409 subjects aged 20–40 were enrolled in Poznań, Poland from 2016 to 2018. Food intake was assessed using three-day food records. Folate intake was calculated based on food composition tables using the Diet 5.0 program (National Food and Nutrition Institute, Poland). Weight to 0.1 kg and height to 0.01 m were measured using an electronic scale and a stadiometer, respectively. BMI was calculated as body weight in kilograms divided by height in meters squared. Fat mass and lean body mass were determined using whole-body air-displacement plethysmography (BodPod, Cosmed, Italy). Genotyping of rs1801133 (MTHFR) was performed with TaqMan probes. The following biomarkers of liver steatosis were calculated: NAFLD liver fat score (NAFLD-LFS), fatty liver index (FLI), and hepatic steatosis index (HSI). To analyze the associations between folate intake and the measured parameters, we used multiple regression with adjustments for age, sex, and energy intake.The mean body weight was 78.57 ± 18.14 kg, BMI 25.96 ± 5.28 kg/m2, and fat percentage 29.20% ± 10.78%. The median folate intake was 299.3 μg/day. Dietary folate intake was negatively associated with body weight, BMI, and body fat percentage (p < 0.05 for all associations). Folate intake was also associated with fatty liver indices—namely HSI (p < 0.05) and FLI (p < 0.05). There was no association between folate intake and NAFLD-LFS. MTHFR rs1801133 polymorphism was not associated with any of the measured parameters.Our findings suggest that folate intake may affect body weight and composition, as well as liver status. Higher folate intake could have a protective effect against obesity, but further studies are necessary to investigate the mechanism.The authors declare that they have no conflict of interests.This work was supported by the Polish National Science Centre(grants 2014/15/B/NZ9/02134 and 2016/21/N/NZ9/01195).


2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Monika Młodzik-Czyżewska ◽  
Anna Malinowska ◽  
Agata Chmurzyńska

AbstractCholine is an essential nutrient involved in several processes, including the export of lipids from the liver. Recent studies have underlined that low choline intake may be linked to greater body weight and liver dysfunction. The aim of this study was thus to determine whether choline intake is associated with body weight, body mass index (BMI), body composition, lipid profile, or liver steatosis indices.407 healthy subjects aged 20–40 were enrolled in Poznań, Poland from 2016 to 2018. Food intake was assessed using three-day food records. Choline intake was analyzed using the USDA Database for the Choline Content of Common Foods, which summarizes the levels of choline found in a range of food items. Weight to 0.1 kg and height to 0.01 m were measured using an electronic scale and a stadiometer, respectively. BMI was calculated as body weight in kilograms divided by height in meters squared. Fat mass and lean body mass were determined using whole-body air-displacement plethysmography. Waist and hip circumferences were measured to 0.5 cm using nonelastic tape. Total cholesterol, LDL cholesterol, HDL cholesterol, and triglyceride levels in serum were determined using a biochemical analyzer. The following biomarkers of liver steatosis were calculated: NAFLD liver fat score (NAFLD-LFS), fatty liver index (FLI), and hepatic steatosis index (HSI). To analyze associations between choline intake and these parameters, we used multiple regression with adjustments for age, sex, and energy intake.The mean BMI was 25.9 ± 5.28 kg/m2, the mean body weight was 78.39 ± 18.03 kg, the mean body fat percentage was 29.1 ± 10.79%, and the mean choline intake was 447.93 ± 235 mg/day. Choline intake was negatively associated with body weight, body fat percentage, waist circumference, and FLI index (p < 0.05 for all associations) and positively associated with HDL cholesterol (p < 0.05). There were no associations between choline intake and BMI, hip circumference, total cholesterol, LDL cholesterol, and the following fatty liver indexes: HSI and NAFLD-LFS.Our study suggests that higher choline intake is associated with favorable body composition and may have a protective role on liver status. However, additional studies are needed to understand the effect of choline on these parameters.The authors declare that they have no conflict of interests.This work was supported by the Polish National Science Centre (grants 2014/15/B/NZ9/02134 and 2016/21/N/NZ9/01195).


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Samuel Ntshaba ◽  
Mbali Mhlongo ◽  
Henrico Erasmus ◽  
Ina Shaw ◽  
Brandon Stuwart Shaw

Background: Obesity is currently one of the most dominating diseases affecting younger adults in South Africa. This is commonly caused by a poor lifestyle, which may lead to an increased risk of non-communicable diseases. Objectives: The aim of the study was to examine if a six-week concurrent resistance and aerobic training program could elicit body composition and cardiorespiratory changes in rural black college women. Methods: Forty sedentary black females (aged 18 - 25 years) were randomly assigned to a combined resistance and aerobic training (COM) group (n = 20) or a control group (n = 20). The COM group participated in four times weekly aerobic and resistance training. Aerobic training consisted of 30 minutes a session (week 1 - 3: cycling for 3 minutes at 60% heart rate reserve (HRR), followed by 2 minutes at 50% HRR; week 4 - 6: 3 minutes at 70% HRR, followed by 2 minutes at 60% HRR). Resistance training consisted of participants training at 50% of their one-repetition maximum (1-RM) for week 1 - 3, doing 3 sets of 15 repetitions; for week 4 - 6 at 60% 1-RM, doing 3 sets of 15 repetitions. Results: Following the intervention, the COM group significantly (P ≤ 0.05) decreased their body fat percentage when compared to the control group (P = 0.006; d = 0.9), while no significant changes were observed in waist-to-hip ratio (P = 0.223) and cardiorespiratory endurance (P = 0.260) in either group. Conclusions: Although body composition (especially waist circumference and body fat percentage) and cardiorespiratory fitness are recommended as the main targets of physical activity programs aimed at preventing CVD in college students, this study demonstrated that a six-week concurrent program improved body fat percentage, and not WHR and cardiorespiratory fitness, in sedentary rural college-aged females. Further, these findings suggest that one method of program design does not fit all populations and that exercise prescription should be targeted and not generalized.


Fire ◽  
2018 ◽  
Vol 1 (3) ◽  
pp. 48 ◽  
Author(s):  
Callie Collins ◽  
Randall Brooks ◽  
Benjamin Sturz ◽  
Andrew Nelson ◽  
Robert Keefe

Wildland firefighting is arduous work with extreme physical and nutritional demands that often exceeds those of athletes competing in sports. The intensity and duration of job demands, impacts the amount of calories burned, which can influence body composition. The purpose of this study was to determine if the body composition of nine wildland firefighters working as smokejumpers changed throughout the 2017 fire season. Subjects (n = 9) for the study ranged in age from 24–49 (age 30.1 ± 8.3 y). Height (177 ± 18.8 cm) and weight (81.32 ± 6.39 kg) was recorded during initial body composition testing and body fat percentage was determined pre and post-season using Lange skinfold calipers. Outcomes were evaluated using a paired t-test. Body fat percentage was significantly different between pre and post-season (average body fat percentage increase = 1.31%; t = 2.31, p = 0.04, alpha = 0.05). Body weight increased slightly from pre to post-season (average increase in body weight: 0.17 kg), although the differences were not significant (t = 2.31, p = 0.78). Change in body fat percentage without change in body weight suggest that monitoring of WLFF body composition and fitness may be needed help inform dietary and fitness interventions to insure that nutritional demands of this population are sufficient to support physical work on the fireline.


2003 ◽  
Vol 23 (11) ◽  
pp. 1489-1494
Author(s):  
Le Nguyen Trung Duc Son ◽  
Hoang Anh Vu ◽  
Yoko Ichikawa ◽  
Daisuke Kunii ◽  
Tohru Sakai ◽  
...  

Author(s):  
MYu Gavryushin ◽  
OV Sazonova ◽  
DO Gorbachev ◽  
LM Borodina ◽  
OV Frolova ◽  
...  

Traditionally, anthropometric method is used in clinical practice for the diagnosis of excess body weight. Obesity is the excess development of primarily visceral and subcutaneous adipose tissue, which can be diagnosed by bioimpedance analysis (BIA). The study was aimed to assess the role of BIA of body composition in the diagnosis of the physical development disorders in children and adolescents. Anthropometric assessment and BIA were performed in 431 Samara school students aged 12–16 of the health status groups I and II (230 boys and 201 girls). The results were analyzed with the use of the regional regression scores, BAZ indices, and the body fat percentage values. The results of estimation using the regression scores showed that 22.61% of boys and 23.43% of girls were overweight, while more than 2/3 of the sample had a normal pattern of physical development. The BAZ indices revealed a significantly higher proportion of overweight children among boys (25.7%), than among girls (11.5%, p < 0.01). The body fat percentage fluctuations based on the BIA data were found not only in children with disharmonious physical development, but also in 60% of children with normal body weight. Moreover, the data of BIA confirmed the body weight fluctuations, revealed with the use of the regression scores, in the significantly larger number of cases compared to the low body weight and excess body weight, diagnosed based on the BAZ indices. Accordingly, anthropometric analysis with the use of the regional regression scores may be used at the baseline for the early diagnosis of the nutritional status disorders in children. To confirm overweight and obesity in children, as well as to provide further treatment, the reliable method for estimation of the body fat content is required, which may be the method of BIA.


2021 ◽  
pp. 1-27
Author(s):  
Masoome Piri Damaghi ◽  
Atieh Mirzababaei ◽  
Sajjad Moradi ◽  
Elnaz Daneshzad ◽  
Atefeh Tavakoli ◽  
...  

Abstract Background: Essential amino acids (EAAs) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soy and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published Randomized Clinical Trials that examined the effect of whey protein supplementation and soy protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. Methods: We searched PubMed, Scopus, and Google Scholar, up to August 2020, for all relevant published articles assessing soy protein supplementation and whey protein supplementation on body composition parameters. We included all Randomized Clinical Trials that investigated the effect of whey protein supplementation and soy protein supplementation on body composition in adults. Pooled means and standard deviations (SD) were calculated using random-effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. Results: After excluding non-relevant articles, 10 studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation weighted mean difference (WMD: 0.91; 95% CI: 0.15, 1.67. P= 0.019). Subgroup analysis, for whey protein, indicated that there was a significant increase in lean body mass in individuals concomitant to exercise (WMD: 1.24; 95% CI: 0.47, 2.00; P= 0.001). There was a significant increase in lean body mass in individuals who received 12 or less weeks of whey protein (WMD: 1.91; 95% CI: 1.18, 2.63; P<0.0001). We observed no significant change between whey protein supplementation and body mass, fat mass, and body fat percentage. We found no significant change between soy protein supplementation and lean body mass, body mass, fat mass, and body fat percentage. Subgroup analysis for soy protein indicated there was a significant increase in lean body mass in individuals who supplemented for 12 or less weeks with soy protein (WMD: 1.48; 95% CI: 1.07, 1.89; P< 0.0001). Conclusion: Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass, and body fat percentage.


Author(s):  
Clíodhna McHugh ◽  
Karen Hind ◽  
Aoife O'Halloran ◽  
Daniel Davey ◽  
Gareth Farrell ◽  
...  

AbstractThe purpose of this study was to investigate longitudinal body mass and body composition changes in one professional rugby union team (n=123), (i) according to position [forwards (n=58) versus backs (n=65)], analysis of players with 6 consecutive seasons of DXA scans (n=21) and, (iii) to examine differences by playing status [academy and international], over 7 years. Players [mean age: 26.8 y, body mass index: 28.9+kg.m2] received DXA scans at fourtime points within each year. A modest (but non-significant) increase in mean total mass (0.8 kg) for professional players was reflected by increased lean mass and reduced body fat mass. At all-time points, forwards had a significantly greater total mass, lean mass and body fat percentage compared to backs (p<0.05). Academy players demonstrated increased total and lean mass and decreased body fat percentage over the first 3 years of senior rugby, although this was not significant. Senior and academy international players had greater lean mass and lower body fat percentage (p<0.05) than non-international counterparts. Despite modest increases in total mass; reflected by increased lean mass and reduced fat mass, no significant changes in body mass or body composition, irrespective of playing position were apparent over 7 years.


2017 ◽  
Vol 14 (5) ◽  
pp. 389-407 ◽  
Author(s):  
Leon Mabire ◽  
Ramakrishnan Mani ◽  
Lizhou Liu ◽  
Hilda Mulligan ◽  
David Baxter

Background:Brisk walking is the most popular activity for obesity management for adults. We aimed to identify whether participant age, sex and body mass index (BMI) influenced the effectiveness of brisk walking.Methods:A search of 9 databases was conducted for randomized controlled trials (RCTs). Two investigators selected RCTs reporting on change in body weight, BMI, waist circumference, fat mass, fat-free mass, and body fat percentage following a brisk walking intervention in obese adults.Results:Of the 5072 studies screened, 22 met the eligibility criteria. The pooled mean differences were: weight loss, –2.13 kg; BMI, –0.96 kg/m2; waist circumference, –2.83 cm; fat mass, –2.59 kg; fat-free mass, 0.29 kg; and body fat percentage, –1.38%. Meta-regression of baseline BMI showed no effect on changes.Conclusions:Brisk walking can create a clinically significant reduction in body weight, BMI, waist circumference, and fat mass for obese men and women aged under 50 years. Obese women aged over 50 years can achieve modest losses, but gains in fat-free mass reduce overall change in body weight. Further research is required for men aged over 50 years and on the influence of BMI for all ages and sexes.


Sign in / Sign up

Export Citation Format

Share Document