scholarly journals Do Elite Endurance Athletes Report Their Training Accurately?

2014 ◽  
Vol 9 (1) ◽  
pp. 85-92 ◽  
Author(s):  
Øystein Sylta ◽  
Espen Tønnessen ◽  
Stephen Seiler

Purpose:The purpose of this study was to validate the accuracy of self-reported (SR) training duration and intensity distribution in elite endurance athletes.Methods:Twenty-four elite cross-country skiers (25 ± 4 y, 67.9 ± 9.88 kg, 75.9 ± 6.50 mL · min−1 · kg−1) SR all training sessions during an ~14-d altitude-training camp. Heart rate (HR) and some blood lactate measurements were collected during 466 training sessions. SR training was compared with recorded training duration from HR monitors, and SR intensity distribution was compared with expert analysis (EA) of all session data.Results:SR training was nearly perfectly correlated with recorded training duration (r = .99), but SR training was 1.7% lower than recorded training duration (P < .001). SR training duration was also nearly perfectly correlated (r = .95) with recorded training duration >55% HRmax, but SR training was 11.4% higher than recorded training duration >55% HRmax (P < .001) due to SR inclusion of time <55% HRmax. No significant differences were observed in intensity distribution in zones 1–2 between SR and EA comparisons, but small discrepancies were found in zones 3–4 (P < .001).Conclusions:This study provides evidence that elite endurance athletes report their training data accurately, although some small differences were observed due to lack of a SR “gold standard.” Daily SR training is a valid method of quantifying training duration and intensity distribution in elite endurance athletes. However, additional common reporting guidelines would further enhance accuracy.

Author(s):  
Ed Maunder ◽  
Daniel J. Plews ◽  
Fabrice Merien ◽  
Andrew E. Kilding

Many endurance athletes perform specific blocks of training in hot environments in “heat stress training camps.” It is not known if physiological threshold heart rates measured in temperate conditions are reflective of those under moderate environmental heat stress. A total of 16 endurance-trained cyclists and triathletes performed incremental exercise assessments in 18°C and 35°C (both 60% relative humidity) to determine heart rates at absolute blood lactate and ventilatory thresholds. Heart rate at fixed blood lactate concentrations of 2, 3, and 4 mmol·L−1 and ventilatory thresholds were not significantly different between environments (P > .05), despite significant heat stress-induced reductions in power output of approximately 10% to 17% (P < .05, effect size = 0.65–1.15). The coefficient of variation for heart rate at these blood lactate concentrations (1.4%−2.9%) and ventilatory thresholds (2.3%−2.7%) between conditions was low, with significant strong positive correlations between measurements in the 2 environments (r = .92–.95, P < .05). These data indicate heart rates measured at physiological thresholds in temperate environments are reflective of measurements taken under moderate environmental heat stress. Therefore, endurance athletes embarking on heat stress training camps can use heart rate–based thresholds ascertained in temperate environments to prescribe training under moderate environmental heat stress.


1993 ◽  
Vol 18 (4) ◽  
pp. 359-365 ◽  
Author(s):  
Phillip B. Watts ◽  
Jon Eric Sulentic ◽  
Kip M. Drobish ◽  
Timothy P. Gibbons ◽  
Victoria S. Newbury ◽  
...  

The present study attempted to quantify differences in peak physiological responses to pole-striding (PS), double poling on roller skis (DP), and diagonal striding on roller skis (DS) during maximal exercise. Six expert cross-country ski racers (3 M, 3 F) with a mean age of 20.2 ± 1.3 yrs served as subjects. Testing was conducted on a motorized ski treadmill with a tracked belt surface. Expired air was analyzed continuously via an automated open-circuit system and averaged each 20 s. Heart rate was monitored via telemetry and arterialized blood was collected within 1 min of test termination and analyzed immediately for lactate. Peak values for heart rate and blood lactate did not differ among techniques. Peak oxygen uptake was higher for PS and DS versus DP whereas no difference was found between PS and DS. The VO2 peak for DP was 77 and 81% of VO2 peak for PS and DS, respectively. It was concluded that despite similar peak heart rate and blood lactate values, DP elicits a lower VO2 peak than DS or PS and that PS responses appear to closely reflect those of DS. Key words: exercise testing, maximum oxygen uptake, roller skiing, specificity of exercise, x-c skiing


2015 ◽  
Vol 16 (2) ◽  
Author(s):  
Benedikt A. Gasser ◽  
Hans H. Hoppeler

AbstractPurpose. Recreational cross-country skiers can benefit from a performance diagnostic when planning a training program. The aim of this study was to establish a simple test protocol to measure endurance capacity and provide training recommendations. Methods. The relationship between endurance performance and cross-country skiing technique was assessed using two tests. First, a lactate threshold test whereby running speed was determined on a treadmill at 4 mmol/l blood lactate concentration. Second, participants completed a variation of the Cooper test using skating technique on flat terrain to determine the distance covered in 12 min and maximum heart rate. Results. There was a correlative (r = 0.18 respectivelly R2 = 0.43) relationship of between the distance covered in the Cooper test and treadmill running speed at 4 mmol/l blood lactate concentration. Conclusions. The two tests allow recreational athletes to rank themselves with regards to their endurance capacity within a population. The relationship between distance covered and maximum heart rate can indicate whether future training should focus on technical or physical improvement.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexander G. Donchev ◽  
Andrew G. Taube ◽  
Elizabeth Decolvenaere ◽  
Cory Hargus ◽  
Robert T. McGibbon ◽  
...  

AbstractAdvances in computational chemistry create an ongoing need for larger and higher-quality datasets that characterize noncovalent molecular interactions. We present three benchmark collections of quantum mechanical data, covering approximately 3,700 distinct types of interacting molecule pairs. The first collection, which we refer to as DES370K, contains interaction energies for more than 370,000 dimer geometries. These were computed using the coupled-cluster method with single, double, and perturbative triple excitations [CCSD(T)], which is widely regarded as the gold-standard method in electronic structure theory. Our second benchmark collection, a core representative subset of DES370K called DES15K, is intended for more computationally demanding applications of the data. Finally, DES5M, our third collection, comprises interaction energies for nearly 5,000,000 dimer geometries; these were calculated using SNS-MP2, a machine learning approach that provides results with accuracy comparable to that of our coupled-cluster training data. These datasets may prove useful in the development of density functionals, empirically corrected wavefunction-based approaches, semi-empirical methods, force fields, and models trained using machine learning methods.


Sign in / Sign up

Export Citation Format

Share Document