The Validity of the Session-RPE Method for Quantifying Training Load in Water Polo

2014 ◽  
Vol 9 (4) ◽  
pp. 656-660 ◽  
Author(s):  
Corrado Lupo ◽  
Laura Capranica ◽  
Antonio Tessitore

Context:The assessment of internal training load (ITL) using the session rating of perceived exertion (session RPE) has been demonstrated to provide valuable information, also in team sports. Nevertheless, no studies have investigated the use of this method during youth water polo training.Purpose:To evaluate youth water polo training, showing the corresponding level of reliability of the session-RPE method.Methods:Thirteen male youth water polo players (age 15.6 ± 0.5 y, height 1.80 ± 0.06 m, body mass 72.7 ± 7.8 kg) were monitored during 8 training sessions (80 individual training sessions) over 10 d. The Edwards summated heart-rate-zone method was used as a reference measure of ITL; the session-RPE rating was obtained using CR-10 scale modified by Foster. The Pearson product–moment was applied to regress the Edwards heart-rate-zone method against CR-10 session RPE for each training session and individual data.Results:Analyses reported overall high (r = .88, R2 = .78) and significant (P < .001) correlations between the Edwards heart-rate and session-RPE methods. Significant correlations were also shown for each training session (r range .69–.92, R2 range .48–.85, P < .05) and individual data (r range .76–.98, R2 range .58–.97, P < .05).Discussion:The results confirmed that the session-RPE method as an easy and reliable tool to evaluate ITL in youth water polo, allowing coaches to efficiently monitor their training plans.

2019 ◽  
Vol 34 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Brenton Surgenor ◽  
Matthew Wyon

OBJECTIVE: The session rating of perceived exertion (session-RPE) is a practical and non-invasive method that allows a quantification of internal training load (ITL) in individual and team sports. As yet, no study has investigated its construct validity in dance. This study examines the convergent validity between the session-RPE method and an objective heart rate (HR)-based method of quantifying the similar ITL in vocational dance students during professional dance training. METHODS: Ten dance students (4 male, 20±1.16 yrs; 6 female, 20±0.52 yrs) participated in this study. During a normal week of training, session-RPE and HR data were recorded in 96 individual sessions. HR data were analysed using Edwards-TL method. Correlation analysis was used to evaluate the convergent validity between the session-RPE and Edwards-TL methods for assessing ITL in a variety of training modes (contemporary, ballet, and rehearsal). RESULTS: The overall correlation between individual session-RPE and Edwards-TL was r=0.72, p<0.0001, suggesting there was a statistically significantly strong positive relationship between session-RPE and Edwards-TL. This trend was observed across all the training modes: rehearsal sessions (r=0.74, p=0.001), contemporary (r=0.60, p=0.001), and ballet (r=0.46, p=0.018) sessions. CONCLUSIONS: This study shows that session-RPE can be considered as a valid method to assess ITL for vocational dance students, and that notably there is some variation between session-RPE and HR-based TL in different dance activities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rasmus Pind ◽  
Peter Hofmann ◽  
Evelin Mäestu ◽  
Eno Vahtra ◽  
Priit Purge ◽  
...  

Purpose: The aim of this study was to investigate the interaction of training load quantification using heart rate (HR) and rating of perceived exertion (RPE)-based methodology, and the relationship between internal training load parameters and subjective training status (Fatigue) in high-level rowers during volume increased low-intensity training period.Methods: Training data from 19 high-level rowers (age 23.5 ± 5.9 years; maximal oxygen uptake 58.9 ± 5.8 ml·min−1·kg−1) were collected during a 4-week volume increased training period. All individual training sessions were analyzed to quantify training intensity distribution based on the HR time-in-zone method (i.e., HR Z1, HR Z2, and HR Z3) determined by the first and second ventilatory thresholds (VT1/VT2). Internal training load was calculated using session RPE (sRPE) to categorize training load by effort (i.e., sRPE1, sRPE2, and sRPE3). The Recovery-Stress Questionnaire for Athletes (RESTQ-Sport) questionnaire was implemented after every week of the study period.Results: No differences were found between the respective HR and effort-based zone distributions during the baseline week (p &gt; 0.05). Compared to HR Z1, sRPE1 was significantly lower in weeks 2–4 (p &lt; 0.05), while sRPE2 was higher in weeks 2–3 compared to HR Z2 (p &lt; 0.05) and, in week 4, the tendency (p = 0.06) of the higher amount of sRPE3 compared to HR Z3 was found. There were significant increases in RESTQ-Sport stress scales and decreases in recovery scales mostly during weeks 3 and 4. Increases in the Fatigue scale were associated with the amounts of sRPE2 and sRPE3 (p = 0.011 and p = 0.008, respectively), while no associations with Fatigue were found for HR-based session quantification with internal or external training load variables.Conclusion: During a low-intensity 4-week training period with increasing volume, RPE-based training quantification indicated a shift toward the harder rating of sessions with unchanged HR zone distributions. Moderate and Hard rated sessions were related to increases in Fatigue. Session rating of perceived exertion and effort-based training load could be practical measures in combination with HR to monitor adaptation during increased volume, low-intensity training period in endurance athletes.


2018 ◽  
Vol 13 (6) ◽  
pp. 750-754 ◽  
Author(s):  
Miranda J. Menaspà ◽  
Paolo Menaspà ◽  
Sally A. Clark ◽  
Maurizio Fanchini

Purpose: To validate the quantification of training load (session rating of perceived exertion [s-RPE]) in an Australian Olympic squad (women’s water polo), assessed with the use of a modified RPE scale collected via a newly developed online system (athlete management system). Methods: Sixteen elite women water polo players (age = 26 [3] y, height  = 1.78 [0.05] m, and body mass  = 75.5 [7.1] kg) participated in the study. Thirty training sessions were monitored for a total of 303 individual sessions. Heart rate was recorded during training sessions using continuous heart-rate telemetry. Participants were asked to rate the intensity of the training sessions on the athlete management system RPE scale, using an online application within 30 min of completion of the sessions. Individual relationships between s-RPE and both Banister training impulse (TRIMP) and Edwards’ method were analyzed. Results: Individual correlations with s-RPE ranged between r = .51 and .79 (Banister TRIMP) and r = .54 and .83 (Edwards’ method). The percentages of moderate and large correlation were 81% and 19% between s-RPE method and Banister TRIMP, and 56% and 44% between s-RPE and Edwards’ method. Conclusions: The online athlete management system for assessing s-RPE was shown to be a valid indicator of internal training load and can be used in elite sport.


Author(s):  
Alice Iannaccone ◽  
Daniele Conte ◽  
Cristina Cortis ◽  
Andrea Fusco

Internal load can be objectively measured by heart rate-based models, such as Edwards’ summated heart rate zones, or subjectively by session rating of perceived exertion. The relationship between internal loads assessed via heart rate-based models and session rating of perceived exertion is usually studied through simple correlations, although the Linear Mixed Model could represent a more appropriate statistical procedure to deal with intrasubject variability. This study aimed to compare conventional correlations and the Linear Mixed Model to assess the relationships between objective and subjective measures of internal load in team sports. Thirteen male youth beach handball players (15.9 ± 0.3 years) were monitored (14 training sessions; 7 official matches). Correlation coefficients were used to correlate the objective and subjective internal load. The Linear Mixed Model was used to model the relationship between objective and subjective measures of internal load data by considering each player individual response as random effect. Random intercepts were used and then random slopes were added. The likelihood-ratio test was used to compare statistical models. The correlation coefficient for the overall relationship between the objective and subjective internal data was very large (r = 0.74; ρ = 0.78). The Linear Mixed Model using both random slopes and random intercepts better explained (p < 0.001) the relationship between internal load measures. Researchers are encouraged to apply the Linear Mixed Models rather than correlation to analyze internal load relationships in team sports since it allows for the consideration of the individuality of players.


Author(s):  
Sullivan Coppalle ◽  
Guillaume Ravé ◽  
Jason Moran ◽  
Iyed Salhi ◽  
Abderraouf Ben Abderrahman ◽  
...  

This study aimed to compare the training load of a professional under-19 soccer team (U-19) to that of an elite adult team (EAT), from the same club, during the in-season period. Thirty-nine healthy soccer players were involved (EAT [n = 20]; U-19 [n = 19]) in the study which spanned four weeks. Training load (TL) was monitored as external TL, using a global positioning system (GPS), and internal TL, using a rating of perceived exertion (RPE). TL data were recorded after each training session. During soccer matches, players’ RPEs were recorded. The internal TL was quantified daily by means of the session rating of perceived exertion (session-RPE) using Borg’s 0–10 scale. For GPS data, the selected running speed intensities (over 0.5 s time intervals) were 12–15.9 km/h; 16–19.9 km/h; 20–24.9 km/h; >25 km/h (sprint). Distances covered between 16 and 19.9 km/h, > 20 km/h and >25 km/h were significantly higher in U-19 compared to EAT over the course of the study (p =0.023, d = 0.243, small; p = 0.016, d = 0.298, small; and p = 0.001, d = 0.564, small, respectively). EAT players performed significantly fewer sprints per week compared to U-19 players (p = 0.002, d = 0.526, small). RPE was significantly higher in U-19 compared to EAT (p =0.001, d = 0.188, trivial). The external and internal measures of TL were significantly higher in the U-19 group compared to the EAT soccer players. In conclusion, the results obtained show that the training load is greater in U19 compared to EAT.


Author(s):  
Alexandru Nicolae Ungureanu ◽  
Corrado Lupo ◽  
Gennaro Boccia ◽  
Paolo Riccardo Brustio

Purpose: The primary aim of this study was to evaluate whether the internal (session rating of perceived exertion [sRPE] and Edwards heart-rate-based method) and external training load (jumps) affect the presession well-being perception on the day after (ie, +22 h), according to age and tactical position, in elite (ie, Serie A2) female volleyball training. Methods: Ten female elite volleyball players (age = 23 [4] y, height = 1.82 [0.04] m, body mass = 73.2 [4.9] kg) had their heart rate monitored during 13 team (115 individual) training sessions (duration: 101 [8] min). Mixed-effect models were applied to evaluate whether sRPE, Edwards method, and jumps were correlated (P ≤ .05) to Hooper index factors (ie, perceived sleep quality/disorders, stress level, fatigue, and delayed-onset muscle soreness) in relation to age and tactical position (ie, hitters, central blockers, opposites, and setters). Results: The results showed a direct relationship between sRPE (P < .001) and presession well-being perception 22 hours apart, whereas the relationship was the inverse for Edwards method internal training load. Age, as well as the performed jumps, did not affect the well-being perception of the day after. Finally, central blockers experienced a higher delayed-onset muscle soreness than hitters (P = .003). Conclusions: Findings indicated that female volleyball players’ internal training load influences the pretraining well-being status on the day after (+ 22 h). Therefore, coaches can benefit from this information to accurately implement periodization in a short-term perspective and to properly adopt recovery strategies in relation to the players’ well-being status.


2015 ◽  
Vol 10 (8) ◽  
pp. 1023-1028 ◽  
Author(s):  
Vincenzo Manzi ◽  
Antonio Bovenzi ◽  
Carlo Castagna ◽  
Paola Sinibaldi Salimei ◽  
Maurizio Volterrani ◽  
...  

Purpose:To assess the distribution of exercise intensity in long-distance recreational athletes (LDRs) preparing for a marathon and to test the hypothesis that individual perception of effort could provide training responses similar to those provided by standardized training methodologies.Methods:Seven LDRs (age 36.5 ± 3.8 y) were followed during a 5-mo training period culminating with a city marathon. Heart rate at 2.0 and 4.0 mmol/L and maximal heart rate were used to establish 3 intensity training zones. Internal training load (TL) was assessed by training zones and TRIMPi methods. These were compared with the session-rating-of-perceived-exertion (RPE) method.Results:Total time spent in zone 1 was higher than in zones 2 and 3 (76.3% ± 6.4%, 17.3% ± 5.8%, and 6.3% ± 0.9%, respectively; P = .000 for both, ES = 0.98, ES = 0.99). TL quantified by session-RPE provided the same result. The comparison between session-RPE and training-zones-based methods showed no significant difference at the lowest intensity (P = .07, ES = 0.25). A significant correlation was observed between TL RPE and TL TRIMPi at both individual and group levels (r = .79, P < .001). There was a significant correlation between total time spent in zone 1 and the improvement at the running speed of 2 mmol/L (r = .88, P < .001). A negative correlation was found between running speed at 2 mmol/L and the time needed to complete the marathon (r = –.83, P < .001).Conclusions:These findings suggest that in recreational LDRs most of the training time is spent at low intensity and that this is associated with improved performances. Session-RPE is an easy-to-use training method that provides responses similar to those obtained with standardized training methodologies.


2019 ◽  
Vol 66 (1) ◽  
pp. 131-141
Author(s):  
Petros G. Botonis ◽  
Argyris G. Toubekis ◽  
Theodoros I. Platanou

AbstractWe investigated the effectiveness of a short-duration training period including an overloaded (weeks 1 and 2) and a reduced training load period (weeks 3 and 4) on wellness, swimming performance and a perceived internal training load in eight high-level water-polo players preparing for play-offs. The internal training load was estimated daily using the rating of perceived exertion (RPE) and session duration (session-RPE). Perceived ratings of wellness (fatigue, muscle soreness, sleep quality, stress level and mood) were assessed daily. Swimming performance was evaluated through 400-m and 20-m tests performed before (baseline) and after the end of weeks 2 and 4. In weeks 3 and 4, the internal training load was reduced by 19.0 ± 3.8 and 36.0 ± 4.7%, respectively, compared to week 1 (p = 0.00). Wellness was improved in week 4 (20.4 ± 2.8 AU) compared to week 1 and week 2 by 16.0 ± 2.2 and 17.3 ± 2.9 AU, respectively (p =0.001). At the end of week 4, swimming performance at 400-m and 20-m tests (299.0 ± 10.2 and 10.2 ± 0.3 s) was improved compared to baseline values (301.4 ± 10.9 and 10.4 ± 0.4 s, p < 0.05) and the overloading training period (week 2; 302.9 ± 9.0 and 10.4 ± 0.4 s, p < 0.05). High correlations were observed between the percentage reduction of the internal training load from week 4 to week 1 (-25.3 ± 5.5%) and the respective changes in 20-m time (-2.1 ± 2.2%, r = 0.88, p < 0.01), fatigue perception (39.6 ± 27.1%), muscle soreness (32.5 ± 26.6%), stress levels (25.6 ± 15.1%) and the overall wellness scores (28.6 ± 21.9%, r = 0.74-0.79, p < 0.05). The reduction of the internal training load improved the overall perceived wellness and swimming performance of players. The aforementioned periodization approach may be an effective training strategy in the lead-up to play-off tournaments.


2015 ◽  
Vol 40 (5) ◽  
pp. 457-463 ◽  
Author(s):  
Victor Amorim Andrade-Souza ◽  
Romulo Bertuzzi ◽  
Gustavo Gomes de Araujo ◽  
David Bishop ◽  
Adriano Eduardo Lima-Silva

This study aimed to investigate whether isolated or combined carbohydrate (CHO) and caffeine (CAF) supplementation have beneficial effects on performance during soccer-related tests performed after a previous training session. Eleven male, amateur soccer players completed 4 trials in a randomized, double-blind, and crossover design. In the morning, participants performed the Loughborough Intermittent Shuttle Test (LIST). Then, participants ingested (i) 1.2 g·kg−1 body mass·h−1 CHO in a 20% CHO solution immediately after and 1, 2, and 3 h after the LIST; (ii) CAF (6 mg·kg−1 body mass) 3 h after the LIST; (iii) CHO combined with CAF (CHO+CAF); and (iv) placebo. All drinks were taste-matched and flavourless. After this 4-h recovery, participants performed a countermovement jump (CMJ) test, a Loughborough Soccer Passing Test (LSPT), and a repeated-sprint test. There were no main effects of supplementation for CMJ, LSPT total time, or best sprint and total sprint time from the repeated-sprint test (p > 0.05). There were also no main effects of supplementation for heart rate, plasma lactate concentration, rating of perceived exertion (RPE), pleasure–displeasure, and perceived activation (p > 0.05). However, there were significant time effects (p < 0.05), with heart rate, plasma lactate concentration, RPE, and perceived activation increasing with time, and pleasure–displeasure decreasing with time. In conclusion, isolated and/or combined CHO and CAF supplementation is not able to improve soccer-related performance tests when performed after a previous training session.


2020 ◽  
Vol 15 (4) ◽  
pp. 534-540 ◽  
Author(s):  
Teun van Erp ◽  
Dajo Sanders ◽  
Jos J. de Koning

Purpose: To describe the training intensity and load characteristics of professional cyclists using a 4-year retrospective analysis. Particularly, this study aimed to describe the differences in training characteristics between men and women professional cyclists. Method: For 4 consecutive years, training data were collected from 20 male and 10 female professional cyclists. From those training sessions, heart rate, rating of perceived exertion, and power output (PO) were analyzed. Training intensity distribution as time spent in different heart rate and PO zones was quantified. Training load was calculated using different metrics such as Training Stress Score, training impulse, and session rating of perceived exertion. Standardized effect size is reported as Cohen’s d. Results: Small to large higher values were observed for distance, duration, kilojoules spent, and (relative) mean PO in men’s training (d = 0.44–1.98). Furthermore, men spent more time in low-intensity zones (ie, zones 1 and 2) compared with women. Trivial differences in training load (ie, Training Stress Score and training impulse) were observed between men’s and women’s training (d = 0.07–0.12). However, load values expressed per kilometer were moderately (d = 0.67–0.76) higher in women compared with men’s training. Conclusions: Substantial differences in training characteristics exist between male and female professional cyclists. Particularly, it seems that female professional cyclists compensate their lower training volume, with a higher training intensity, in comparison with male professional cyclists.


Sign in / Sign up

Export Citation Format

Share Document