Effect of Knee and Trunk Angle on Kinetic Variables During the Isometric Midthigh Pull: Test–Retest Reliability

2015 ◽  
Vol 10 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Paul Comfort ◽  
Paul. A. Jones ◽  
John J. McMahon ◽  
Robert Newton

The isometric midthigh pull (IMTP) has been used to monitor changes in force, maximum rate of force development (mRFD), and impulse, with performance in this task being associated with performance in athletic tasks. Numerous postures have been adopted in the literature, which may affect the kinetic variables during the task; therefore, the aim of this investigation was to determine whether different knee-joint angles (120°, 130°, 140°, and 150°) and hip-joint angles (125° and 145°), including the subjects preferred posture, affect force, mRFD, and impulse during the IMTP. Intraclass correlation coefficients demonstrated high within-session reliability (r ≥ .870, P < .001) for all kinetic variables determined in all postures, excluding impulse measures during the 130° knee-flexion, 125° hip-flexion posture, which showed a low to moderate reliability (r = .666–.739, P < .001), while between-sessions testing demonstrated high reliability (r > .819, P < .001) for all kinetic variables. There were no significant differences in peak force (P > .05, Cohen d = 0.037, power = .408), mRFD (P > .05, Cohen d = 0.037, power = .409), or impulse at 100 ms (P > .05, Cohen d = 0.056, power = .609), 200 ms (P > .05, Cohen d = 0.057, power = .624), or 300 ms (P > .05, Cohen d = 0.061, power = .656) across postures. Smallest detectable differences demonstrated that changes in performance of >1.3% in peak isometric force, >10.3% in mRFD, >5.3% in impulse at 100 ms, >4.4% in impulse at 200 ms, and >7.1% in impulse at 300 ms should be considered meaningful, irrespective of posture.

2014 ◽  
Vol 30 (2) ◽  
pp. 322-325 ◽  
Author(s):  
Matt S. Stock ◽  
Micheal J. Luera

The ability to examine force curves from multiple-joint assessments combines many of the benefits of dynamic constant external resistance exercise and isokinetic dynamometry. The purpose of this investigation was to examine test-retest reliability statistics for peak and mean force using the Exerbotics eSQ during maximal concentric and eccentric squats. Seventeen resistance-trained men (mean ± SD age = 21 ± 2 years) visited the laboratory on two occasions. For each trial, the subjects performed two maximal concentric and eccentric squats, and the muscle actions with the highest force values were analyzed. There were no mean differences between the trials (P> .05), and the effect sizes were < 0.12. When the entire force curve was examined, the intraclass correlation coefficients (model 2,1) and standard errors of measurement, respectively, were concentric peak force = 0.743 (8.8%); concentric mean force = 0.804 (6.0%); eccentric peak force = 0.696 (10.6%); eccentric mean force = 0.736 (9.6%). These findings indicated moderate-to-high reliability for the peak and mean force values obtained from the Exerbotics eSQ during maximal squat testing. The analysis of force curves from multiple-joint testing provides researchers and practitioners with a reliable means of assessing performance, especially during concentric muscle actions.


Author(s):  
Marcos A Soriano ◽  
G Gregory Haff ◽  
Paul Comfort ◽  
Francisco J Amaro-Gahete ◽  
Antonio Torres-González ◽  
...  

The aims of this study were to (I) determine the differences and relationship between the overhead press and split jerk performance in athletes involved in weightlifting training, and (II) explore the magnitude of these differences in one-repetition maximum (1RM) performances between sexes. Sixty-one men (age: 30.4 ± 6.7 years; height: 1.8 ± 0.5 m; body mass 82.5 ± 8.5 kg; weightlifting training experience: 3.7 ± 3.5 yrs) and 21 women (age: 29.5 ± 5.2 yrs; height: 1.7 ± 0.5 m; body mass: 62.6 ± 5.7 kg; weightlifting training experience: 3.0 ± 1.5 yrs) participated. The 1RM performance of the overhead press and split jerk were assessed for all participants, with the overhead press assessed on two occasions to determine between-session reliability. The intraclass correlation coefficients (ICC) and 95% confidence intervals showed a high reliability for the overhead press ICC = 0.98 (0.97 – 0.99). A very strong correlation and significant differences were found between the overhead press and split jerk 1RM performances for all participants (r = 0.90 [0.93 – 0.85], 60.2 ± 18.3 kg, 95.7 ± 29.3 kg, p ≤ 0.001). Men demonstrated stronger correlations between the overhead press and split jerk 1RM performances (r = 0.83 [0.73-0.90], p ≤ 0.001) compared with women (r = 0.56 [0.17-0.80], p = 0.008). These results provide evidence that 1RM performance of the overhead press and split jerk performance are highly related, highlighting the importance of upper-limb strength in the split jerk maximum performance.


2008 ◽  
Vol 22 (6) ◽  
pp. 737-744 ◽  
Author(s):  
I-Ping Hsueh ◽  
Miao-Ju Hsu ◽  
Ching-Fan Sheu ◽  
Su Lee ◽  
Ching-Lin Hsieh ◽  
...  

Objective. To provide empirical justification for selecting motor scales for stroke patients, the authors compared the psychometric properties (validity, responsiveness, test-retest reliability, and smallest real difference [SRD]) of the Fugl-Meyer Motor Scale (FM), the simplified FM (S-FM), the Stroke Rehabilitation Assessment of Movement instrument (STREAM), and the simplified STREAM (S-STREAM). Methods. For the validity and responsiveness study, 50 inpatients were assessed with the FM and the STREAM at admission and discharge to a rehabilitation department. The scores of the S-FM and the S-STREAM were retrieved from their corresponding scales. For the test-retest reliability study, a therapist administered both scales on a different sample of 60 chronic patients on 2 occasions. Results. Only the S-STREAM had no notable floor or ceiling effects at admission and discharge. The 4 motor scales had good concurrent validity (rho ≥ .91) and satisfactory predictive validity (rho = .72-.77). The scales showed responsiveness (effect size d ≥ 0.34; standardized response mean ≥ 0.95; P < .0001), with the S-STREAM most responsive. The test-retest agreements of the scales were excellent (intraclass correlation coefficients ≥ .96). The SRD of the 4 scales was 10% of their corresponding highest score, indicating acceptable level of measurement error. The upper extremity and the lower extremity subscales of the 4 showed similar results. Conclusions. The 4 motor scales showed acceptable levels of reliability, validity, and responsiveness in stroke patients. The S-STREAM is recommended because it is short, responsive to change, and able to discriminate patients with severe or mild stroke.


Author(s):  
Ian S. MacLean ◽  
Taylor M. Southworth ◽  
Ian J. Dempsey ◽  
Neal B. Naveen ◽  
Hailey P. Huddleston ◽  
...  

AbstractThe tibial tubercle–trochlear groove (TT-TG) distance is currently utilized to evaluate knee alignment in patients with patellar instability. Sagittal plane pathology measured by the sagittal tibial tubercle–trochlear groove (sTT-TG) distance has been described in instability but may also be important to consider in patients with cartilage injury. This study aims to (1) describe interobserver reliability of the sTT-TG distance and (2) characterize the change in the sTT-TG distance with respect to changing knee flexion angles. In this cadaveric study, six nonpaired cadaveric knees underwent magnetic resonance imaging (MRI) studies at each of the following degrees of knee flexion: −5, 0, 5, 10, 15, and 20. The sTT-TG distance was measured on the axial T2 sequence. Four reviewers measured this distance for each cadaver at each flexion angle. Intraclass correlation coefficients were calculated to determine interobserver reliability and reproducibility of the sTT-TG measurement. Analysis of variance (ANOVA) tests and Friedman's tests with a Bonferroni's correction were performed for each cadaver to compare sTT-TG distances at each flexion angle. Significance was defined as p < 0.05. There was excellent interobserver reliability of the sTT-TG distance with all intraclass correlation coefficients >0.9. The tibial tubercle progressively becomes more posterior in relation to the trochlear groove (more negative sTT-TG distance) with increasing knee flexion. The sTT-TG distance is a measurement that is reliable between attending surgeons and across training levels. The sTT-TG distance is affected by small changes in knee flexion angle. Awareness of knee flexion angle on MRI is important when this measurement is utilized by surgeons.


2018 ◽  
Vol 6 (s2) ◽  
pp. S252-S263 ◽  
Author(s):  
Lisa M. Barnett ◽  
Owen Makin

Assessing young children’s perceptions is commonly done one on one with an interviewer. An app enables several children to complete the scale at once. The objective was to describe an app to assess children’s perceptions of movement competence and then present consistency of child responses. The Pictorial Scale of Perceived Movement Skill Competence (PMSC) has fundamental movement skill (FMS; e.g., catch) and play items (e.g., cycling). The PMSC android app has the same items and images but children complete it independently with audio. Intraclass correlation coefficients (ICC) assessed i) test-retest reliability using the PMSC app on 18 items in 42 children (M = 6.8 yrs) and ii) consistency between measures for 13 FMS items in 44 children (M = 8.5 yrs). Over time (M = 6.9 days, SD = 0.35) the full PMSC had good consistency (ICC = 0.79, 95% CI 0.64–0.88) and the FMS items had moderate consistency (ICC = 0.68, 95% CI 0.47–0.81). There was good agreement between the app and interview for FMS items (ICC = 0.86, 95% CI 0.76–0.92). Locomotor items were less consistent. The PMSC app can generally be recommended. Future research could investigate how different forms of digital assessment affect children’s perception.


2020 ◽  
Vol 47 (4) ◽  
pp. 479-486
Author(s):  
Yuki Kondo ◽  
Kyota Bando ◽  
Yosuke Ariake ◽  
Wakana Katsuta ◽  
Kyoko Todoroki ◽  
...  

BACKGROUND: The reliability of the evaluation of the Balance Evaluation Systems Test (BESTest) and its two abbreviated versions are confirmed for balance characteristics and reliability. However, they are not utilized in cases of spinocerebellar ataxia (SCA). OBJECTIVE: We aimed to examine the test-retest reliability and minimal detectable change (MDC) of the BESTest and its abbreviated versions in persons with mild to moderate spinocerebellar ataxia. METHODS: The BESTest was performed in 20 persons with SCA at baseline and one month later. The scores of the abbreviated version of the BESTest were determined from the BESTest scores. The interclass correlation coefficient (1,1) was used as a measure of relative reliability. Furthermore, we calculated the MDC in the BESTest and its abbreviated versions. RESULTS: The intraclass correlation coefficients (1,1) and MDC at 95% confidence intervals were 0.92, 8.7(8.1%), 0.91, 4.1(14.5%), and 0.81, 5.2(21.6%) for the Balance, Mini-Balance, and Brief-Balance Evaluation Systems Tests, respectively. CONCLUSIONS: The BESTest and its abbreviated versions had high test-retest reliability. The MDC values of the BESTest could enable clinicians and researchers to interpret changes in the balance of patients with SCA more precisely.


2014 ◽  
Vol 104 (6) ◽  
pp. 601-609 ◽  
Author(s):  
Thales R. Souza ◽  
Haroldo L. Fonseca ◽  
Ana Carolina A. Vaz ◽  
Juliana S. Antero ◽  
Cristiano S. Marinho ◽  
...  

Background Detailed description of foot pronation-supination requires multisegment evaluation of the kinematics of the foot-ankle complex. There are noninvasive methods with independent (single) tracking markers attached directly to the skin. However, these methods are inconsistent with the usual rigid segments assumption. In contrast, using clustered markers is compatible with this assumption and is necessary for analyses that need tracking markers to be distant from the foot (eg, shod walking). This study investigated the between-day reliability of a cluster-based method for multisegment analysis of foot-ankle angles related to pronation-supination. Methods Ten healthy adults participated in the study. An anatomically based, three-dimensional model comprising the shank, calcaneus, and forefoot was created. Rigid clusters of tracking markers were used to determine the relative positions and motions of the segments. Mean positions were measured with the subtalar joint in neutral position during standing. Furthermore, mean angles, peaks, and timings of peaks were measured during the stance phase of walking. All of the variables were measured twice, with a 1-week interval. To evaluate reliability, intraclass correlation coefficients were calculated for discrete variables and coefficients of multiple correlation for entire gait curves. Results Intraclass correlation coefficients varied from 0.8 to 0.93 for the angles obtained when the subtalar joint was in neutral and from 0.76 to 0.9 for walking variables. Coefficients of multiple correlation varied from 0.93 to 0.97 for walking curves. Conclusions The method described has good to high reliability and provides a systematic method for multisegment kinematic evaluation of foot-ankle pronation-supination.


1989 ◽  
Vol 9 (5) ◽  
pp. 259-272 ◽  
Author(s):  
Jane Case-Smith

The Posture and Fine Motor Assessment of Infants (PFMAI) (Case-Smith, 1987) is a newly developed instrument for assessing the quality of motor function in infants. The test measures components of posture and fine motor control as they first develop. The purpose of this study was to support the test's reliability and validity. Interrater reliability, analyzed with intraclass correlation coefficients (ICCs), was high (.989 for total scores). Test-retest reliability, measured by ICCs, was .853 and .913 for the two test sections. The PFMAI demonstrated concurrent validity with the Peabody Developmental Motor Scales, Revised (Folio & Fewell, 1983) (correlations were .673 and .829 for the individual sections). Scores on the PFMAI were highly correlated with the infant's ages (.892 to .941); this finding provided one indication of construct validity.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Taher I. Omari ◽  
Johanna Savilampi ◽  
Karmen Kokkinn ◽  
Mistyka Schar ◽  
Kristin Lamvik ◽  
...  

Purpose. We evaluated the intra- and interrater agreement and test-retest reliability of analyst derivation of swallow function variables based on repeated high resolution manometry with impedance measurements.Methods. Five subjects swallowed10×10 mL saline on two occasions one week apart producing a database of 100 swallows. Swallows were repeat-analysed by six observers using software. Swallow variables were indicative of contractility, intrabolus pressure, and flow timing.Results. The average intraclass correlation coefficients (ICC) for intra- and interrater comparisons of all variable means showedsubstantialtoexcellentagreement (intrarater ICC 0.85–1.00; mean interrater ICC 0.77–1.00). Test-retest results were less reliable. ICC for test-retest comparisons ranged fromslighttoexcellentdepending on the class of variable. Contractility variables differed most in terms of test-retest reliability. Amongst contractility variables, UES basal pressure showedexcellenttest-retest agreement (mean ICC 0.94), measures of UES postrelaxation contractile pressure showedmoderatetosubstantialtest-retest agreement (mean Interrater ICC 0.47–0.67), and test-retest agreement of pharyngeal contractile pressure ranged fromslighttosubstantial(mean Interrater ICC 0.15–0.61).Conclusions. Test-retest reliability of HRIM measures depends on the class of variable. Measures of bolus distension pressure and flow timing appear to be more test-retest reliable than measures of contractility.


Sign in / Sign up

Export Citation Format

Share Document