scholarly journals The Difference in Neuromuscular Fatigue and Workload During Competition and Training in Elite Cricketers

2019 ◽  
Vol 14 (4) ◽  
pp. 439-444 ◽  
Author(s):  
Kieran Cooke ◽  
Tom Outram ◽  
Raph Brandon ◽  
Mark Waldron ◽  
Will Vickery ◽  
...  

Purpose: First, to assess changes in neuromuscular function via alterations in countermovement-jump strategy after training and 2 forms of competition and second, to compare the relationship between workloads and fatigue in seam bowlers and nonseam bowlers. Methods: Twenty-two professional cricketers’ neuromuscular function was assessed at baseline, immediately post and +24 h posttraining, and after multiday and 1-day cricket events. In addition, perceptual (rating of perceived exertion [RPE] and soreness) measures and external loads (PlayerLoad™, number of sprints, total distance, and overs) were monitored across all formats. Results: Seam bowlers covered more distance, completed more sprints, and had a higher RPE in training (P < .05), without any difference in soreness compared with nonseam bowlers. Compared with seam bowlers, the nonseam bowlers’ peak force decreased post-24 h compared with baseline only in 1-d cricket (95% CI, 2.1–110.0 N; P < .04). There were no pre–post training or match differences in jump height or alterations in jump strategy (P > .05). Seam bowlers increased their peak jumping force from baseline to immediately posttraining or game (95% CI, 28.8–132.4 N; P < .01) but decreased between postcricket to +24 h (95% CI, 48.89–148.0 N; P < .001). Conclusion: Seam bowlers were more accustomed to high workloads than nonseamers and thus more fatigue resistant. Changes in jump height or strategy do not appear to be effective methods of assessing fatigue in professional crickets. More common metrics such as peak force are more sensitive.

2013 ◽  
Vol 8 (6) ◽  
pp. 663-670 ◽  
Author(s):  
Margot Callewaert ◽  
Stefan Geerts ◽  
Evert Lataire ◽  
Jan Boone ◽  
Marc Vantorre ◽  
...  

Purpose:To develop a sailing ergometer that accurately simulates upwind sailing exercise.Methods:A sailing ergometer that measures roll moment accompanied by a biofeedback system that allows imposing a certain quasi-isometric upwind sailing protocol (ie, 18 bouts of 90-s hiking at constantly varying hiking intensity interspersed with 10 s to tack) was developed. Ten male high-level Laser sailors performed an incremental cycling test (ICT; ie, step protocol at 80 W + 40 W/3 min) and an upwind sailing test (UST). During both, heart rate (HR), oxygen uptake (VO2), ventilation (VE), respiratory-exchange ratio, and rating of perceived exertion were measured. During UST, also the difference between the required and produced hiking moment (HM) was calculated as error score (ES). HR, VO2, and VE were calculated relative to their peak values determined during ICT. After UST, the subjects were questioned about their opinion on the resemblance between this UST and real-time upwind sailing.Results:An average HM of 89.0% ± 2.2% HMmax and an average ES of 4.1% ± 1.8% HMmax were found. Mean HR, VO2, and VE were, respectively, 80% ± 4% HRpeak, 39.5% ± 4.5% VO2peak, and 30.3% ± 3.7% VEpeak. Both HM and cardiorespiratory values appear to be largely comparable to literature reports during on-water upwind sailing. Moreover, the subjects gave the upwind sailing ergometer a positive resemblance score.Conclusions:Results suggest that this ergometer accurately simulates on-water upwind sailing exercise. As such, this ergometer could be a great help in performance diagnostics and training follow-up.


2019 ◽  
Vol 14 (10) ◽  
pp. 1338-1343
Author(s):  
Thiago S. Duarte ◽  
Danilo L. Alves ◽  
Danilo R. Coimbra ◽  
Bernardo Miloski ◽  
João C. Bouzas Marins ◽  
...  

Purpose: To analyze the technical and tactical training load in professional volleyball players, using subjective internal training load (session rating of perceived exertion  [SRPE]) and objective internal training load (training impulse of the heart rate [HR]) and the relationship between them. Methods: The sample was composed of 15 male professional volleyball players. They were monitored during 37 training sessions that included both technical (n = 23) and tactical (n = 14) training. Technical and training load was calculated using SRPE and training impulse of the HR. Results: Significant correlations were found between the methods in tactical (r = .616) and technical training (r = −.414). Furthermore, it was noted that technical training occurs up to 80% of HRmax (zone 3) and tactical training between 70% and 90% of HRmax (zones 3–4). Conclusions: The training impulse of the HR method has proved to be effective for training-load control during tactical training. However, it was limited compared with technical training. Thus, the use of SRPE is presented as a more reliable method in the different types of technical training in volleyball.


Author(s):  
Alice Iannaccone ◽  
Andrea Fusco ◽  
Antanas Skarbalius ◽  
Audinga Kniubaite ◽  
Cristina Cortis ◽  
...  

Purpose: Assessing the relationship between external load (EL) and internal load (IL) in youth male beach handball players. Methods: A total of 11 field players from the Lithuanian U17 beach handball team were monitored across 14 training sessions and 7 matches. The following EL variables were assessed by means of inertial movement units: PlayerLoad™, accelerations, decelerations, changes of direction, and jumps and total of inertial movements. IL was assessed objectively and subjectively using the summated heart rate zones and training load calculated via session rating of perceived exertion, respectively. Spearman correlations (ρ) were used to assess the relationship between EL and IL. The interindividual variability was investigated using linear mixed models with random intercepts with IL as dependent variable, PlayerLoad™ as the independent variable, and players as random effect. Results: The lowest significant (P < .05) relationship was for high jumps with objective (ρ = .56) and subjective (ρ = .49) IL. The strongest relationship was for PlayerLoad™ with objective (ρ = .9) and subjective (ρ = .84) IL. From the linear mixed model, the estimated SD of the random intercepts was 19.78 arbitrary units (95% confidence interval, 11.75–33.31); SE = 5.26, and R2 = .47 for the objective IL and 6.03 arbitrary units (95% confidence interval, 0.00–7330.6); SE = 21.87; and R2 = .71 for the subjective IL. Conclusions: Objective and subjective IL measures can be used as a monitoring tool when EL monitoring is not possible. Coaches can predict IL based on a given EL by using the equations proposed in this study.


2011 ◽  
Vol 27 (3) ◽  
pp. 207-214 ◽  
Author(s):  
Tyler J. Kirby ◽  
Jeffrey M. McBride ◽  
Tracie L. Haines ◽  
Andrea M. Dayne

The purpose of this investigation was to determine the relationship between relative net vertical impulse and jump height in a countermovement jump and static jump performed to varying squat depths. Ten college-aged males with 2 years of jumping experience participated in this investigation (age: 23.3 ± 1.5 years; height: 176.7 ± 4.5 cm; body mass: 84.4 ± 10.1 kg). Subjects performed a series of static jumps and countermovement jumps in a randomized fashion to a depth of 0.15, 0.30, 0.45, 0.60, and 0.75 m and a self-selected depth (static jump depth = 0.38 ± 0.08 m, countermovement jump depth = 0.49 ± 0.06 m). During the concentric phase of each jump, peak force, peak velocity, peak power, jump height, and net vertical impulse were recorded and analyzed. Net vertical impulse was divided by body mass to produce relative net vertical impulse. Increasing squat depth corresponded to a decrease in peak force and an increase in jump height and relative net vertical impulse for both static jump and countermovement jump. Across all depths, relative net vertical impulse was statistically significantly correlated to jump height in the static jump (r= .9337,p< .0001, power = 1.000) and countermovement jump (r= .925,p< .0001, power = 1.000). Across all depths, peak force was negatively correlated to jump height in the static jump (r= –0.3947,p= .0018, power = 0.8831) and countermovement jump (r= –0.4080,p= .0012, power = 0.9050). These results indicate that relative net vertical impulse can be used to assess vertical jump performance, regardless of initial squat depth, and that peak force may not be the best measure to assess vertical jump performance.


2019 ◽  
Vol 41 (02) ◽  
pp. 75-81
Author(s):  
Kieran Howle ◽  
Adam Waterson ◽  
Rob Duffield

AbstractThis study compared injury incidence and training loads between single and multi-match weeks, and seasons with and without congested scheduling. Measures of internal (session-Rating of Perceived Exertion × duration for training/match and % maximal heart rate) and external load (total, low-, high-, and very high-intensity running distances) along with injury incidence rates were determined from 42 players over 3 seasons; including 1 without and 2 (season 2 and 3) with regular multi-match weeks. Within-player analyses compared 1 (n=214) vs. 2-match (n=86) weeks (>75min in matches), whilst team data was compared between seasons. Total injury rates were increased during multi-match weeks (p=0.001), resulting from increased match and training injuries (50.3, 16.9/1000h). Between-season total injury rates were highest when congested scheduling was greatest in season 3 (27.3/1000h) and season 2 (22.7/1000h) vs. season 1 (14.1/1000h; p=0.021). All external load measures were reduced in multi-match weeks (p<0.05). Furthermore, all internal and external training loads were lowest in seasons with congestion (p<0.05). In conclusion, increased injury rates in training and matches exist. Total loads remain comparable between single and multi-match weeks, though reduce in congested seasons. Whether injuries result from reduced recovery, increased match exposure or the discreet match external loads remain to be elucidated.


2020 ◽  
Vol 15 (8) ◽  
pp. 1138-1146
Author(s):  
Nick Dobbin ◽  
Cari Thorpe ◽  
Jamie Highton ◽  
Craig Twist

Purpose: To examine the within- and between-sexes physical performance, well-being, and neuromuscular function responses across a 4-day international touch rugby (Touch) tournament. Methods: Twenty-one males and 20 females completed measures of well-being (fatigue, soreness, sleep, mood, and stress) and neuromuscular function (countermovement jump height, peak power output, and peak force) during a 4-day tournament with internal, external, and perceptual loads recorded for all matches. Results: Relative and absolute total, low-intensity (females), and high-intensity distance were lower on day 3 (males and females) (effect size [ES] = −0.37 to −0.71) compared with day 1. Mean heart rate was possibly to most likely lower during the tournament (except day 2 males; ES = −0.36 to −0.74), whereas rating of perceived exertion-training load was consistently higher in females (ES = 0.02 to 0.83). The change in mean fatigue, soreness, and overall well-being was unclear to most likely lower (ES = −0.33 to −1.90) across the tournament for both sexes, with greater perceived fatigue and soreness in females on days 3 to 4 (ES = 0.39 to 0.78). Jump height and peak power output were possibly to most likely lower across days 2 to 4 (ES = −0.30 to −0.84), with greater reductions in females (ES = 0.21 to 0.66). Well-being, countermovement jump height, and peak force were associated with changes in external, internal, and perceptual measures of load across the tournament (η2 = −.37 to .39). Conclusions: Elite Touch players experience reductions in well-being, neuromuscular function, and running performance across a 4-day tournament, with notable differences in fatigue and running between males and females, suggesting that sex-specific monitoring and intervention strategies are necessary.


Author(s):  
Corrado Lupo ◽  
Alexandru Nicolae Ungureanu ◽  
Gennaro Boccia ◽  
Andrea Licciadi ◽  
Alberto Rainoldi ◽  
...  

Purpose: The present study aimed to verify if practicing tackles during rugby union training sessions would affect the players’ internal training load and acute strength loss. Method: A total of 9 male Italian Serie A rugby union players (age: 21 [2] y) were monitored by means of an integrated approach across 17 sessions, 6 with tackles (WT) and 11 with no tackles (NT). Edwards training load was quantified using heart-rate monitoring. Global positioning system devices were used to quantify the total distance and time at >20 W. Work-to-rest ratio was quantified by means of a video analysis. Before (PRE) and after (POST) the session, the players’ well-being and rating of perceived exertion were measured, respectively. The countermovement jump and plyometric push-up jump tests were performed on a force plate to record the players’ PRE–POST concentric peak force. Linear mixed models were applied to quantify the differences between WT and NT in terms of training load and PRE–POST force deltas, even controlling for other training factors. Results: The Edwards training load (estimated mean [EM]; standard error [SE]; WT: EM = 214, SE = 11.8; NT: EM = 194, SE = 11.1; P = .01) and session rating of perceived exertion (WT: EM = 379, SE = 21.9; NT: EM = 277, SE = 16.4; P < .001) were higher in WT than in NT. Conversely, no difference between the sessions emerged in the countermovement jump and plyometric push-up concentric peak force deltas. Conclusions: Although elite rugby union players’ external and internal training load can be influenced by practicing tackles, upper- and lower-limb strength seem to not be affected.


Retos ◽  
2020 ◽  
pp. 632-636
Author(s):  
Ana Denise Andrade ◽  
Mário Simim ◽  
Witalo Kassiano ◽  
José Manuel Palao ◽  
Karla De Jesus ◽  
...  

Summary. This study aimed to verify the differences between the training load planned by coaches and that perceived by Beach Volleyball (BV) players and observe the effects on athletes’ neuromuscular function. Three female BV players and well-known coaches participated in the research and were accompanied for three training weeks in the preseason phase. Rating of perceived exertion (RPE) was collected through the 0-10 scale during a previous training session. Strength, physical fitness and tactical-technical training have been assessed with coaches and athletes’ responses 30 minutes after the end of the session. RPE Session was calculated by the product between the training duration in minutes and RPE, to estimate Internal Training Load (ITL). Neuromuscular function was assessed through Countermovement Jump (CMJ). To verify differences between coaches and athletes’ responses and vertical jump performance were used either the magnitude of differences and clinical inference. Athletes experienced lower RPE and ITL as planned by coaches in the first week of training. CMJ increased substantially from the first to the third week (with likely differences (93/03/04), standardized difference = 1.60 and 90% confidence intervals = 0.00; 3.21). We suggest that training load planned by coaches similar to that perceived by athletes have a concomitant improvement with neuromuscular performance.Resumen. Este estudio tuvo como objetivo verificar las diferencias entre la carga de entrenamiento planificada por los entrenadores y la percibida por los jugadores de voleibol de playa (VP) y observar los efectos sobre la función neuromuscular de los atletas. Tres jugadoras de VP y entrenadores conocidos participaron en la investigación y fueron acompañadas durante tres semanas de entrenamiento en la fase de pretemporada. El valor nominal del esfuerzo percibido (NEP) se recolectó a través de la escala 0-10 durante una sesión de entrenamiento anterior. La fuerza, la forma física y el entrenamiento táctico-técnico se evaluaron con las respuestas de los entrenadores y atletas 30 minutos después del final de la sesión. El producto calculó la sesión de NEP entre la duración del entrenamiento en minutos y el NEP, para estimar la carga interna de entrenamiento (CIE). La función neuromuscular se evaluó mediante salto contramovimiento (SCM). Para verificar las diferencias entre los entrenadores y las respuestas de los atletas y el rendimiento del salto vertical, se utilizó la magnitud de las diferencias y la inferencia clínica. Los atletas experimentaron menos NEP e CIE que fueron planificados por los entrenadores en la primera semana de entrenamiento. SCM aumentó sustancialmente de la primera a la tercera semana (con diferencias probables (93/03/04), diferencia estandarizada = 1.60 e intervalos de confianza del 90% = 0.00; 3.21). Sugerimos que la carga de entrenamiento planificada por entrenadores similar a la percibida por los atletas tenga una mejora concomitante con el rendimiento neuromuscular.


Author(s):  
Alice Iannaccone ◽  
Daniele Conte ◽  
Cristina Cortis ◽  
Andrea Fusco

Internal load can be objectively measured by heart rate-based models, such as Edwards’ summated heart rate zones, or subjectively by session rating of perceived exertion. The relationship between internal loads assessed via heart rate-based models and session rating of perceived exertion is usually studied through simple correlations, although the Linear Mixed Model could represent a more appropriate statistical procedure to deal with intrasubject variability. This study aimed to compare conventional correlations and the Linear Mixed Model to assess the relationships between objective and subjective measures of internal load in team sports. Thirteen male youth beach handball players (15.9 ± 0.3 years) were monitored (14 training sessions; 7 official matches). Correlation coefficients were used to correlate the objective and subjective internal load. The Linear Mixed Model was used to model the relationship between objective and subjective measures of internal load data by considering each player individual response as random effect. Random intercepts were used and then random slopes were added. The likelihood-ratio test was used to compare statistical models. The correlation coefficient for the overall relationship between the objective and subjective internal data was very large (r = 0.74; ρ = 0.78). The Linear Mixed Model using both random slopes and random intercepts better explained (p < 0.001) the relationship between internal load measures. Researchers are encouraged to apply the Linear Mixed Models rather than correlation to analyze internal load relationships in team sports since it allows for the consideration of the individuality of players.


Sign in / Sign up

Export Citation Format

Share Document