Australian Football Player Work Rate: Evidence of Fatigue and Pacing?

2010 ◽  
Vol 5 (3) ◽  
pp. 394-405 ◽  
Author(s):  
Robert J. Aughey

Previous research has suggested elite Australian footballers undertake pacing strategies to preserve high intensity activity later in matches. However, this research used GPS with slow sample rates, did not express performance relative to minutes played during games and used lowly ranked players.Methods:Therefore in this study movement was recorded by GPS at 5 Hz. Running performance was expressed per period of the match (rotation) divided into low-intensity activity (LIA, 0.10 to 4.17 m⋅s–1); high-intensity running (HIR, 4.17 to 10.00 m⋅s–1) and maximal accelerations (2.78 to 10.00 m⋅s–2). All data were expressed relative to the first period of play in the match and the magnitude of effects was analyzed with the effect size (ES) statistic and expressed with confidence intervals.Results:The total and LIA distance covered by players did not change by a practically important magnitude during games (ES< 0.20). High intensity running was reduced in both rotations of the second quarter, Q3R2 and both rotations of the fourth quarter (ES -0.30 ± 0.14; -0.42 ± 0.14; -0.30 ± 0.14; -0.42 ± 0.14; and -0.48 ± 0.15 respectively). Maximal acceleration performance was reduced in Q1R2, and each rotation of the second half of matches.Conclusion:When expressed per minute of game time played, total distance and low intensity activity distance are not reduced by a practically important magnitude in AF players during a match. These data are therefore inconsistent with the concept of team sport players pacing their effort during matches. However, both high intensity running and maximal accelerations are reduced later in games, indicative of significant fatigue in players.

2011 ◽  
Vol 6 (3) ◽  
pp. 367-379 ◽  
Author(s):  
Robert J. Aughey

Background:Australian football (AF) is a highly intermittent sport, requiring athletes to accelerate hundreds of times with repeated bouts of high-intensity running (HIR). Players aim to be in peak physical condition for finals, with anecdotal evidence of increased speed and pressure of these games.Purpose:However, no data exists on the running demands of finals games, and therefore the aim of this study was to compare the running demands of finals to regular season games with matched players and opponents.Methods:Player movement was recorded by GPS at 5 Hz and expressed per period of the match (rotation), for total distance, high-intensity running (HIR, 4.17-10.00 m·s-1) and maximal accelerations (2.78-10.00 m·s–2). All data was compared for regular season and finals games and the magnitude of effects was analyzed with the effect size (ES) statistic and expressed with confidence intervals.Results:Each of the total distance (11%; ES: 0.78 ± 0.30), high-intensity running distance (9%; ES: 0.29 ± 0.25) and number of maximal accelerations (97%; ES: 1.30 ± 0.20) increased in finals games. The largest percentage increases in maximal accelerations occurred from a commencement velocity of between 3–4 (47%; ES: 0.56 ± 0.21) and 4–5 m·s-1 (51%; ES: 0.72 ± 0.26), and with <19 s between accelerations (53%; ES: 0.63 ± 0.27).Conclusion:Elite AF players nearly double the number of maximal accelerations in finals compared with regular season games. This large increase is superimposed on requirements to cover a greater total distance and spend more time at high velocity during finals games. Players can be effectively conditioned to cope with these increased demands, even during a long competitive season.


2013 ◽  
Vol 8 (1) ◽  
pp. 44-51 ◽  
Author(s):  
Luke J. Boyd ◽  
Kevin Ball ◽  
Robert J. Aughey

Purpose:To describe the external load of Australian football matches and training using accelerometers.Methods:Nineteen elite and 21 subelite Australian footballers wore accelerometers during matches and training. Accelerometer data were expressed in 2 ways: from all 3 axes (player load; PL) and from all axes when velocity was below 2 m/s (PLSLOW). Differences were determined between 4 playing positions (midfielders, nomadics, deeps, and ruckmen), 2 playing levels (elite and subelite), and matches and training using percentage change and effect size with 90% confidence intervals.Results:In the elite group, midfielders recorded higher PL than nomadics and deeps did (8.8%, 0.59 ± 0.24; 34.2%, 1.83 ± 0.39 respectively), and ruckmen were higher than deeps (37.2%, 1.27 ± 0.51). Elite midfielders, nomadics, and ruckmen recorded higher PLSLOW than deeps (13.5%, 0.65 ± 0.37; 11.7%, 0.55 ± 0.36; and 19.5%, 0.83 ± 0.50, respectively). Subelite midfielders were higher than nomadics, deeps, and ruckmen (14.0%, 1.08 ± 0.30; 31.7%, 2.61 ± 0.42; and 19.9%, 0.81 ± 0.55, respectively), and nomadics and ruckmen were higher than deeps for PL (20.6%, 1.45 ± 0.38; and 17.4%, 0.57 ± 0.55, respectively). Elite midfielders, nomadics, and ruckmen recorded higher PL (7.8%, 0.59 ± 0.29; 12.9%, 0.89 ± 0.25; and 18.0%, 0.67 ± 0.59, respectively) and PLSLOW (9.4%, 0.52 ± 0.30; 11.3%, 0.68 ± 0.25; and 14.1%, 0.84 ± 0.61, respectively) than subelite players. Small-sided games recorded the highest PL and PLSLOW and were the only training drill to equal or exceed the load from matches across positions and playing levels.Conclusion:PL differed between positions, with midfielders the highest, and between playing levels, with elite higher. Differences between matches and training were also evident, with PL from small-sided games equivalent to or higher than matches.


2014 ◽  
Vol 9 (5) ◽  
pp. 811-816 ◽  
Author(s):  
Rich D. Johnston ◽  
Tim J. Gabbett ◽  
Anthony J. Seibold ◽  
David G. Jenkins

Purpose:Repeated sprinting incorporating tackles leads to greater reductions in sprint performance than repeated sprinting alone. However, the influence of physical contact on the running demands of game-based activities is unknown. The aim of this study was to determine whether the addition of physical contact altered pacing strategies during game-based activities.Methods:Twenty-three elite youth rugby league players were divided into 2 groups. Group 1 played the contact game on day 1 while group 2 played the noncontact game; 72 h later they played the alternate game. Each game consisted of offside touch on a 30 × 70-m field, played over two 8-min halves. Rules were identical between games except the contact game included a 10-s wrestle bout every 50 s. Microtechnology devices were used to analyze player movements.Results:There were greater average reductions during the contact game for distance (25%, 38 m/min, vs 10%, 20 m/min; effect size [ES] = 1.78 ± 1.02) and low-speed distance (21%, 24 m/min, vs 0%, 2 m/s; ES = 1.38 ± 1.02) compared with the noncontact game. There were similar reductions in high-speed running (41%, 18 m/min, vs 45%, 15 m/min; ES = 0.15 ± 0.95).Conclusions:The addition of contact to game-based activities causes players to reduce low-speed activity in an attempt to maintain high-intensity activities. Despite this, players were unable to maintain high-speed running while performing contact efforts. Improving a player’s ability to perform contact efforts while maintaining running performance should be a focus in rugby league training.


2018 ◽  
Vol 13 (7) ◽  
pp. 940-946 ◽  
Author(s):  
Farhan Juhari ◽  
Dean Ritchie ◽  
Fergus O’Connor ◽  
Nathan Pitchford ◽  
Matthew Weston ◽  
...  

Context: Team-sport training requires the daily manipulation of intensity, duration, and frequency, with preseason training focusing on meeting the demands of in-season competition and training on maintaining fitness. Purpose: To provide information about daily training in Australian football (AF), this study aimed to quantify session intensity, duration, and intensity distribution across different stages of an entire season. Methods: Intensity (session ratings of perceived exertion; CR-10 scale) and duration were collected from 45 professional male AF players for every training session and game. Each session’s rating of perceived exertion was categorized into a corresponding intensity zone, low (<4.0 arbitrary units), moderate (≥4.0 and <7.0), and high (≥7.0), to categorize session intensity. Linear mixed models were constructed to estimate session duration, intensity, and distribution between the 3 preseason and 4 in-season periods. Effects were assessed using linear mixed models and magnitude-based inferences. Results: The distribution of the mean session intensity across the season was 29% low intensity, 57% moderate intensity, and 14% high intensity. While 96% of games were high intensity, 44% and 49% of skills training sessions were low intensity and moderate intensity, respectively. Running had the highest proportion of high-intensity training sessions (27%). Preseason displayed higher training-session intensity (effect size [ES] = 0.29–0.91) and duration (ES = 0.33–1.44), while in-season game intensity (ES = 0.31–0.51) and duration (ES = 0.51–0.82) were higher. Conclusions: By using a cost-effective monitoring tool, this study provides information about the intensity, duration, and intensity distribution of all training types across different phases of a season, thus allowing a greater understanding of the training and competition demands of Australian footballers.


2020 ◽  
Vol 128 (3) ◽  
pp. 698-708 ◽  
Author(s):  
Brady E. Hanson ◽  
Meagan Proffit ◽  
Jayson R. Gifford

While vascular function, assessed as the ability of the vasculature to dilate in response to a stimulus, is related to cardiovascular health, its relationship to exercise hyperemia is unclear. This study sought to determine if blood flow during submaximal and maximal exercise is related to vascular function. Nineteen healthy adults completed multiple assessments of vascular function specific to the leg, including passive leg movement (PLM), rapid onset vasodilation (ROV), reactive hyperemia (RH), and flow-mediated dilation (FMD). On a separate day, exercise blood flow (Doppler ultrasound) was assessed in the same leg during various intensities of single-leg, knee-extension (KE) exercise. Vascular function, determined by PLM, ROV, and RH, was related to exercise blood flow at high intensities, including maximum work rate (WRmax) ( r = 0.58–0.77, P < 0.001), but not low intensities, like ~21% WRmax ( r = 0.12–0.34, P = 0.12–0.62). Relationships between multiple indices of vascular function and peak exercise blood flow persisted when controlling for quadriceps mass and exercise work rate ( P < 0.05), indicating vascular function is independently related to the blood flow response to intense exercise. When divided into two groups based upon the magnitude of the PLM response, subjects with a lower PLM response exhibited lower exercise flow at several absolute work rates, as well as lower peak flow ( P < 0.05). In conclusion, leg flow during dynamic exercise is independently correlated with multiple different indices of microvascular function. Thus microvascular function appears to modulate the hyperemic response to high-intensity, but not low-intensity, exercise. NEW & NOTEWORTHY While substantial evidence indicates that individuals with lower vascular function are at greater risk for cardiovascular disease, with many redundant vasodilator pathways present during exercise, it has been unclear if low vascular function actually impacts blood flow during exercise. This study provides evidence that vascular function, assessed by multiple noninvasive methods, is related to the blood flow response to high-intensity leg exercise in healthy young adults. Importantly, healthy young adults with lower levels of vascular function, particularly microvascular function, exhibit lower blood flow during high-intensity, and maximal knee extension exercise. Thus it appears that in addition to increasing one’s risk of cardiovascular disease, lower vascular function is also related to a blunted blood flow response during high-intensity exercise.


2013 ◽  
Vol 8 (2) ◽  
pp. 130-138 ◽  
Author(s):  
Tim J. Gabbett ◽  
Håvard Wiig ◽  
Matt Spencer

Background:To the authors’ knowledge, no study has investigated the concurrent repeated, high-intensity (RHIA) and repeated-sprint activity (RSA) of intermittent team-sport competition.Purpose:In this study, they report on the RSA of elite women’s football competition. In addition, they describe the nature of RHIA (eg, striding and sprinting activities) that involve a high energy cost and are associated with short (ie, ≤20 s) recovery periods.Methods:Thirteen elite women soccer players underwent video-based time–motion analysis on 34 occasions during national and international standard matches. RSA and RHIA were defined as successive (ie, 2) sprints or striding and sprinting efforts that occurred with ≤20 s between efforts.Results:The number of RSA and RHIA bouts performed was similar between the first and second halves of matches. Sprinting and striding/sprinting durations tended to remain relatively stable irrespective of the number of efforts in an RSA or RHIA bout or the period of play. However, recovery duration between efforts increased in the second half, when a greater number of efforts were performed per bout.Conclusion:These findings suggest that first- to second-half reductions in RHIA and RSA do not occur in elite women’s soccer competition. However, players increase the amount of low-intensity recovery undertaken between RHIA and RSA efforts, most likely in an attempt to maintain RHIA and RSA performance. These findings emphasize the importance of RSA and RHIA to elite women’s soccer and highlight the importance of training this quality to prevent reductions in performance during competitive match play.


2021 ◽  
Vol 10 (2) ◽  
pp. 59-64
Author(s):  
Hugo Salazar ◽  
◽  
Franc Garcia ◽  
Luka Svilar ◽  
Julen Castellano ◽  
...  

The goal of this study was to compare the physical demands of the same team in three different basketball com- petitions (EBA league (EBA), U18 regional league (U18L), and a U18 international tournament (U18T)) during the same season. Data from eleven U18 players (age: 16.92 ± 0.67 years) were collected using inertial movement units. As external load variables, Player Load (PL), accelerations (ACC), decelerations (DEC), changes of direction (COD), and jumps (JUMP) were expressed in their total (t) and high intensity (h) values. The analysis of variances (ANOVA) and effect size (ES, Cohen’s d) with their respective 90% confidence intervals were applied to identify differences between the competitions. U18T showed the highest values in PL, tACC, tDEC, hDEC, tCOD, tJUMP, and hJUMP (small to moderate ES). However, the hACC and hCOD values were greater in EBA (small ES) than in U18L and U18T. In conclusion, all three competitions presented different external load demands for the same group of players. This data could help basketball coaches to optimize the training process based on the competition in which their team plays. Furthermore, data could also indicate the most suitable competition for players’ development.


1991 ◽  
Vol 70 (2) ◽  
pp. 841-848 ◽  
Author(s):  
Y. Armon ◽  
D. M. Cooper ◽  
R. Flores ◽  
S. Zanconato ◽  
T. J. Barstow

We hypothesized that the O2 uptake (Vo2) response to high-intensity exercise would be different in children than in adults. To test this hypothesis, 22 children (6-12 yr old) and 7 adults (27-40 yr old) performed 6 min of constant-work-rate cycle-ergometer exercise. Sixteen children performed a single test above their anaerobic threshold (AT). In a separate protocol, six children and all adults exercised at low and high intensity. Low-intensity exercise corresponded to the work rate at 80% of each subject's AT. High-intensity exercise (above the AT) was determined first by calculating the difference in work rate between the AT and the maximal Vo2 (delta). Twenty-five, 50, and 75% of this difference were added to the work rate at the subject's AT, and these work rates were referred to as 25% delta, 50% delta, and 75% delta. For exercise at 50% delta and 75% delta, Vo2 increased throughout exercise (O2 drift, linear regression slope of Vo2 as a function of time from 3 to 6 min) in all the adults, and the magnitude of the drift was correlated with increasing work rates in the above-AT range (r = 0.91, P less than 0.0001). In contrast, no O2 drift was observed in over half of the children during above-AT exercise. The O2 drifts were much higher in adults (1.76 +/- 0.63 ml O2.kg-1.min-2 at 75% delta) than in children (0.20 +/- 0.42, P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 77 (04) ◽  
pp. 685-689 ◽  
Author(s):  
Paul A Kyrle ◽  
Johannes Brockmeier ◽  
Ansgar Weltermann ◽  
Sabine Eichinger ◽  
Wolfgang Speiser ◽  
...  

SummaryCoumarin-induced skin necrosis is believed to be due to a transient hypercoagulable state resulting from a more rapid decline of the protein C activity relative to that of coagulation factors (F) II, IX and X during initiation of oral anticoagulant therapy. We studied hemostatic system activation during early oral anticoagulant treatment with a technique that investigates coagulation activation in the microcirculation.We determined in 10 healthy volunteers the concentrations of prothrombin fragment F1+2 (f1.2) and thrombin-antithrombin complex (TAT) in blood emerging from an injury of the microvasculature (bleeding time incision) before and after initiation of both high-inten- sity and low-intensity coumarin therapy. In addition, f1.2, TAT, activated F VII (F Vila) and the activities of FII, F VII, F X and protein C were measured in venous blood.A rapid decline of F VII and protein C was observed in venous blood with activities at 24 h of 7 ± 1% and 43 ± 2%, respectively, during the high-intensity regimen. A 20 to 30% reduction of f1.2 and TAT was seen in venous blood at 72 h with no major difference between the high- and the low-intensity regimen. F Vila levels were substantially affected by anticoagulation with a >90% reduction at 48 h during the high-intensity regimen. Following high-intensity coumarin, a >50% decrease in the fl.2 and TAT levels was found in shed blood at 48 h suggesting substantial inhibition of thrombin generation during early oral anticoagulation. An increase in the f1.2 and TAT levels was seen neither in shed blood nor in venous blood.Our data do not support the concept of a transient imbalance between generation and inhibition of thrombin as the underlying pathomechanism of coumarin-induced skin nekrosis.


Sign in / Sign up

Export Citation Format

Share Document