Differences in Rotational Kinetics and Kinematics for Professional Baseball Pitchers With Higher Versus Lower Pitch Velocities

2020 ◽  
Vol 36 (2) ◽  
pp. 68-75 ◽  
Author(s):  
Micheal J. Luera ◽  
Brittany Dowling ◽  
Tyler W.D. Muddle ◽  
Nathaniel D.M. Jenkins

Pitch velocity (PV) is important for pitching success, and the pelvis and trunk likely influence pitch performance. The purposes of this study were to examine the differences in pelvis and trunk kinetics and kinematics in professional baseball pitchers who throw at lower versus higher velocities (HVPs) and to examine the relationships among pelvis and trunk kinetics and kinematics and PV during each phase of the pitch delivery. The pitch velocity, pelvis and trunk peak angular velocities, kinetic energies and torques, and elbow and shoulder loads were compared among HVPs (n = 71; PV ≥ 40.2 m/s) and lower velocities pitchers (n = 78; PV < 39.8 m/s), as were trunk and pelvis rotation, flexion, and obliquity among 7 phases of the pitching delivery. Relationships among the kinetic and kinematic variables and PVs were examined. Higher velocity pitchers achieved greater upper trunk rotation at hand separation (+7.2°, P < .001) and elbow extension (+5.81°, P = .002) and were able to generate greater upper trunk angular velocities (+36.6 m/s, P = .01) compared with lower velocity pitcher. Trunk angular velocity (r = .29) and upper trunk rotation at hand separation (r = .18) and foot contact (r = .17) were weakly related to PV. Therefore, HVPs rotate their upper trunk to a greater degree during the early phases of the pitching motion and subsequently generate greater trunk angular velocities and PV.

2018 ◽  
Vol 63 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Ben Serrien ◽  
Jean-Pierre Baeyens

Abstract The proximal-to-distal sequence has previously been discussed in the light of performance and injury prevention. Sports biomechanics literature in general, and in team handball in specific, has claimed to be of importance to inform coaches on what constitutes a ‘good’ technical performance. However, hitherto no prospective studies exist on how this information may be used and this may in part be due to the general small sample sizes. We therefore performed a systematic review and meta-analysis of proximal-to-distal sequencing in team handball throwing motions. A total of fourteen articles were included in the systematic review. Meta-analyses were performed for the timing of maximal angles and angular velocities as well as initiation of joint angular velocities in the penalty throw, the standing throw with run-up and the jump shot of experienced team handball players. For the initiation of joint angular velocities, the overall sequence was estimated to start with pelvis rotation, followed by trunk rotation, trunk flexion, shoulder internal rotation and elbow extension. For maximal velocities, the sequence started with pelvis rotation, followed by trunk rotation, trunk flexion, elbow extension, and shoulder internal rotation (post ball release). The obtained results were discussed in the light of talent identification purposes. Limitations to individual study methodology and of the present meta-analysis were also discussed. Much more research will be necessary, but at the very least, this review can provide a starting point for evidence-based discussions between movement scientists and team handball coaches to include proximal-to-distal sequencing as a measure of coordination to gauge early onset of talent.


2009 ◽  
Vol 25 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Rafael F. Escamilla ◽  
Glenn S. Fleisig ◽  
Coop DeRenne ◽  
Marcus K. Taylor ◽  
Claude T. Moorman ◽  
...  

A motion system collected 120-Hz data from 14 baseball adult hitters using normal and choke-up bat grips. Six swings were digitized for each hitter, and temporal and kinematic parameters were calculated. Compared with a normal grip, the choke-up grip resulted in 1) less time during stride phase and swing; 2) the upper torso more opened at lead foot contact; 3) the pelvis more closed and less bat linear velocity at bat-ball contact; 4) less range of motion of the upper torso and pelvis during swing; 5) greater elbow flexion at lead foot contact; and 6) greater peak right elbow extension angular velocity. The decreased time during the stride phase when using a choke-up grip implies that hitters quicken their stride when they choke up. Less swing time duration and less upper torso and pelvis rotation range of motion using the choke-up grip supports the belief of many coaches and players that using a choke-up grip results in a “quicker” swing. However, the belief that using a choke-up grip leads to a faster moving bat was not supported by the results of this study.


2021 ◽  
Vol 49 (12) ◽  
pp. 3386-3394
Author(s):  
Joseph E. Manzi ◽  
Brittany Dowling ◽  
Zhaorui Wang ◽  
Kyle N. Kunze ◽  
Jennifer Estrada ◽  
...  

Background: Understanding the relationship between the temporal phases of the baseball pitch and subsequent joint loading may improve our understanding of optimal pitching mechanics and contribute to injury prevention in baseball pitchers. Purpose: To investigate the temporal phases of the pitching motion and their associations with ball velocity and throwing arm kinetics in high school (HS) and professional (PRO) baseball pitchers. Study Design: Descriptive laboratory study. Methods: PRO (n = 317) and HS (n = 54) baseball pitchers were evaluated throwing 8 to 12 fastball pitches using 3-dimensional motion capture (480 Hz). Four distinct phases of the pitching motion were evaluated based on timing of angular velocities: (1) Foot-Pelvis, (2) Pelvis-Torso, (3) Torso-Elbow, and (4) Elbow-Ball. Peak elbow varus torque, shoulder internal rotation torque, and shoulder distraction force were also calculated and compared between playing levels using 2-sample t tests. Linear mixed-effect models with compound symmetry covariance structures were used to correlate pitch velocity and throwing arm kinetics with the distinct temporal phases of the pitching motion. Results: PRO pitchers had greater weight and height, and faster ball velocities than HS pitchers ( P < .001). There was no difference in total pitch time between groups ( P = .670). PRO pitchers spent less time in the Foot-Pelvis ( P = .010) and more time in the Pelvis-Torso ( P < .001) phase comparatively. Shorter time spent in the earlier phases of the pitching motion was significantly associated with greater ball velocity for both PRO and HS pitchers (Foot-Pelvis: B = −6.4 and B = −11.06, respectively; Pelvis-Torso: B = −6.4 and B = −11.4, respectively), while also associated with increased shoulder proximal force (Pelvis-Torso: B = −76.4 and B = −77.5, respectively). Decreased time in the Elbow-Ball phase correlated with greater shoulder proximal force for both cohorts (B = −1150 and B = −645, respectively) with no significant correlation found for ball velocity. Conclusion: Significant differences in temporal phases exist between PRO and HS pitchers. For all pitchers, increased time spent in the final phase of the pitching motion has the potential to decrease shoulder distraction force with no significant loss in ball velocity. Clinical Relevance: Identifying risk factors for increased shoulder and elbow kinetics, acting as a surrogate for loading at the respective joints, has potential implications in injury prevention.


2018 ◽  
Vol 6 (3) ◽  
pp. 232596711876078 ◽  
Author(s):  
Micheal J. Luera ◽  
Brittany Dowling ◽  
Mitchel A. Magrini ◽  
Tyler W.D. Muddle ◽  
Ryan J. Colquhoun ◽  
...  

Background: Elbow injury rates among baseball pitchers are rapidly rising. However, this increase has been most dramatic among high school (HS) pitchers. Purpose: To examine pitch velocity and the kinetic and kinematic characteristics of HS versus professional (PRO) pitchers to identify potential differences that may play a role in the increased risk of ulnar collateral ligament injury in youth pitchers. Study Design: Controlled laboratory study. Methods: A total of 37 HS (mean ± SD: age, 16 ± 1 years) and 40 PRO (age, 21 ± 2 years) baseball pitchers completed maximal-effort baseball pitches during a single testing session, from which pitch velocity (PV), absolute and normalized elbow varus torque (EVTA and EVTN, respectively) during arm cocking and at maximum shoulder external rotation (MER), and 8 other elbow and shoulder torques or forces and rotational kinematics of the pelvis and trunk were analyzed, recorded, and compared. Results: PV was greater in PRO than HS athletes; EVTA was greater in PRO than HS athletes during arm cocking and at MER; but EVTN was similar during arm cocking and greater in HS than PRO athletes at MER. In PRO athletes, PV was not related to EVTA during arm cocking or MER ( r = 0.01-0.05). Furthermore, in PRO athletes, EVTA during arm cocking and at MER were inversely related to upper trunk rotation at hand separation and foot contact and to pelvis rotation at elbow extension ( r = –0.30 to –0.33). In contrast, in HS athletes, PV was strongly related to EVTA during arm cocking and MER ( r = 0.76-0.77). Furthermore, in HS athletes, PV and EVTA during arm cocking and at MER were moderately or strongly related to the other elbow and shoulder torques and forces ( r = 0.424-0.991), and EVTA was not related to upper trunk rotation or pelvis rotation throughout the throwing motion ( r = –0.16 to 0.15). Conclusion: The kinetic and rotational kinematic differences observed between PRO and HS pitchers in this study may help explain the greater performance of PRO pitchers while allowing them to minimize EVT during pitching. HS pitchers, however, do not appear to be as capable of utilizing the forces generated by rotation of their trunk and pelvis to aid in pitching, and those who throw the hardest generate the greatest forces at the shoulder and elbow. As a result, they experience higher EVTs relative to their body size, which may place them at an increased risk of injury. Clinical Relevance: HS pitchers throw harder primarily by generating larger forces in the arm and shoulder. Thus, owing to the relative physical immaturity of HS versus PRO pitchers, these factors may place them at an increased risk of injury. Coaches may first wish to focus on improving the rotational kinematics of HS pitchers rather than first focusing on achieving greater pitch velocities.


2017 ◽  
Vol 45 (14) ◽  
pp. 3358-3367 ◽  
Author(s):  
Rafael F. Escamilla ◽  
Glenn S. Fleisig ◽  
Dave Groeschner ◽  
Ken Akizuki

Background: In professional baseball pitchers, pitching biomechanics have not been examined for the slider, and the only known study for the curveball and changeup examined limited kinetics. Moreover, no known studies have investigated pitching biomechanics between strikes and balls. Purpose/Hypothesis: The purpose was to compare pitching biomechanics in professional baseball pitchers among the fastball, slider, curveball, and changeup and between balls and strikes. It was hypothesized that pitching kinematics and kinetics would be similar among the slider, fastball, and curveball; shoulder and elbow forces and torques would be significantly lower in the changeup; and pitching biomechanics would be similar between balls and strikes. Study Design: Controlled laboratory study. Methods: Among 18 professional baseball pitchers, 38 reflective markers were positioned on the body and each player threw 32 to 40 maximum effort pitches—consisting of the fastball, curveball, slider, and changeup pitch types—from a regulation mound to a catcher. The markers were tracked by 18 high-speed 180-Hz cameras, and data were processed and run through a computer program to calculate 25 kinematic parameters, 7 kinetic parameters, and 4 temporal parameters for each pitch type and for both strikes and balls. A 2-way repeated-measures analysis of variance ( P < .01) was used to assess pitching biomechanical differences among pitch type and pitch result (balls vs strikes). Results: During arm cocking, elbow varus torque was 8% to 9% greater in the fastball and slider compared with the changeup, shoulder horizontal adduction torque was 17% to 20% greater in the slider and curveball compared with the changeup, and shoulder anterior force was 13% greater in the curveball compared with the changeup. During arm deceleration, elbow flexor torque was 9% to 14% greater in the fastball compared with the curveball and changeup, and elbow and shoulder proximal forces were 10% to 14% greater in the fastball, slider, and curveball compared with the changeup. At ball release, forward trunk tilt was 16% to 19% greater in the fastball and curveball compared with the changeup, contralateral trunk tilt was 26% to 41% greater in the curveball compared with the slider and changeup, knee flexion was 18% greater in the changeup compared with the fastball, and the knee extended 7° more from lead foot contact to ball release in the fastball compared with the changeup. During arm cocking, pelvis angular velocity was 7% to 8% greater in the fastball compared with the curveball and changeup, and upper trunk angular velocity was 5% greater in the fastball compared with the changeup. During arm acceleration, shoulder internal rotation angular velocity was 6% to 7% greater in the fastball, slider, and curveball compared with the changeup, and ball velocity at ball release was 11% to 18% greater in the fastball compared with the slider, changeup, and curveball and 6% greater in the slider compared with the curveball. For all the kinematic, kinetic, and temporal parameters, analysis showed no significant differences between balls and strikes and no significant interactions between pitch type and pitch result. Conclusion: Nearly all kinetic differences among pitch types occurred between the changeup and the remaining 3 pitch types. Shoulder and elbow forces and torques and injury risk were greater among the fastball, slider, and curveball compared with the changeup but were similar among the fastball, slider, and curveball. Body segment and joint positions were similar among all pitch types at lead foot contact and at maximum shoulder external rotation; however, at ball release, throwing a fastball and curveball resulted in greater knee extension and more forward and contralateral trunk tilt compared with throwing a changeup and slider. Movement speeds for the pelvis, upper trunk, and shoulder were greatest in the fastball and least in the changeup and were generally similar among the fastball, slider, and curveball. The timing of when pelvis, upper trunk, elbow, and shoulder velocities occurred among the fastball, slider, curveball, and changeup was similar, and no kinematic or kinetic differences were noted between throwing balls and strikes. Clinical Relevance: The results from the current study will help clinicians understand differences in pitching biomechanics in professional baseball pitchers among the fastball, slider, curveball, and changeup; the study provides limited insight into shoulder and elbow injury risk associated with different types of pitches.


2009 ◽  
Vol 25 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Yungchien Chu ◽  
Glenn S. Fleisig ◽  
Kathy J. Simpson ◽  
James R. Andrews

The purpose of the current study was to identify the biomechanical features of elite female baseball pitching. Kinematics and kinetics of eleven elite female baseball pitchers were reported and compared with eleven elite male pitchers. Results suggested that females share many similarities with males in pitching kinematics, with a few significant differences. Specifically, at the instant of stride foot contact, a female pitcher had a shorter and more open stride and less separation between pelvis orientation and upper torso orientation. From foot contact to ball release, a female pitcher produced lower peak angular velocity for throwing elbow extension and stride knee extension. Ball velocity was lower for the female. Foot contact to ball release took more time for a female pitcher. Maximal proximal forces at the shoulder and elbow joints were less for a female pitcher.


2018 ◽  
Vol 1 (84) ◽  
Author(s):  
Vilma Jurevičienė ◽  
Albertas Skurvydas ◽  
Juozas Belickas ◽  
Giedra Bušmanienė ◽  
Dovilė Kielė ◽  
...  

Research  background  and  hypothesis.  Proprioception  is  important  in  the  prevention  of  injuries  as  reduced proprioception  is  one  of  the  factors  contributing  to  injury  in  the  knee  joint,  particularly  the  ACL.  Therefore, proprioception appears not only important for the prevention of ACL injuries, but also for regaining full function after ACL reconstruction.Research aim. The aim of this study was to understand how proprioception is recovered four and five months after anterior cruciate ligament (ACL) reconstruction.Research methods. The study included 15 male subjects (age – 33.7 ± 2.49 years) who had undergone unilateral ACL reconstruction with a semitendinosus/gracilis (STG) graft in Kaunas Clinical Hospital. For proprioceptive assessment, joint position sense (JPS) was measured on both legs using an isokinetic dynamometer (Biodex), at knee flexion of 60° and 70°, and at different knee angular velocities of 2°/s and 10°/s. The patients were assessed preoperatively and after 4 and 5 months, postoperatively.Research results. Our study has shown that the JPS’s (joint position sense) error scores  to a controlled active movement is significantly higher in injured ACL-deficient knee than in the contralateral knee (normal knee) before surgery and after four and five months of rehabilitation.  After 4 and 5 months of rehabilitation we found significantly lower values in injured knees compared to the preoperative data. Our study has shown that in injured knee active angle reproduction errors after 4 and 5 months of rehabilitation were higher compared with the ones of the uninjured knee. Proprioceptive ability on the both legs was  independent of all differences angles for target and starting position for movement. The knee joint position sense on both legs depends upon the rate of two different angular velocities and the mean active angle reproduction errors at the test of angular velocity slow speed was the highest compared with the fast angular velocity. Discussion and conclusions. In conclusion, our study shows that there was improvement in mean JPS 4 and 5 months after ACL reconstruction, but it did not return to normal indices.Keywords: knee joint, joint position sense, angular velocity, starting position for movement.


Sign in / Sign up

Export Citation Format

Share Document