Effects of Bat Grip on Baseball Hitting Kinematics

2009 ◽  
Vol 25 (3) ◽  
pp. 203-209 ◽  
Author(s):  
Rafael F. Escamilla ◽  
Glenn S. Fleisig ◽  
Coop DeRenne ◽  
Marcus K. Taylor ◽  
Claude T. Moorman ◽  
...  

A motion system collected 120-Hz data from 14 baseball adult hitters using normal and choke-up bat grips. Six swings were digitized for each hitter, and temporal and kinematic parameters were calculated. Compared with a normal grip, the choke-up grip resulted in 1) less time during stride phase and swing; 2) the upper torso more opened at lead foot contact; 3) the pelvis more closed and less bat linear velocity at bat-ball contact; 4) less range of motion of the upper torso and pelvis during swing; 5) greater elbow flexion at lead foot contact; and 6) greater peak right elbow extension angular velocity. The decreased time during the stride phase when using a choke-up grip implies that hitters quicken their stride when they choke up. Less swing time duration and less upper torso and pelvis rotation range of motion using the choke-up grip supports the belief of many coaches and players that using a choke-up grip results in a “quicker” swing. However, the belief that using a choke-up grip leads to a faster moving bat was not supported by the results of this study.

2013 ◽  
Vol 7 (1) ◽  
pp. 35-42
Author(s):  
Tomáš Gryc ◽  
František Zahálka ◽  
Tomáš Malý

When the golf swing is involving all body segments and is thus considered as one of the most complex of sports motions. The aim of this study was to determine the selected kinematic parameters of movement of pelvic and segments of the upper body (shoulder rotation, hip rotation, X-Factor, stretch X-Factor) that affect the club head speed at ball contact in elite golfers. To build the upper body segment model were used spots and their position during the measurement was scanned by 3D kinematic analyzer CODA Motion System. To determine the interindividual stability of performance the coefficient of variation was used and for statistical analysis of the relationship between kinematic and temporal parameters and the club head speed at ball contact the Pearson's correlation coefficient was used. We found a high interindividual stability in maximized shoulders rotation and club head speed at ball contact parameters. When analyzing relationship between the club head speed at ball contact and the observed kinematic parameters of the movement of the upper body only a high relationship with the stretch X-factor parameter was found.


2009 ◽  
Vol 25 (3) ◽  
pp. 210-218 ◽  
Author(s):  
Rafael F. Escamilla ◽  
Glenn S. Fleisig ◽  
Coop DeRenne ◽  
Marcus K. Taylor ◽  
Claude T. Moorman ◽  
...  

We propose that learning proper hitting kinematics should be encouraged at a young age during youth baseball because this may help reinforce proper hitting kinematics as a player progresses to higher levels of baseball in their adult years. To enhance our understanding between youth and adult baseball hitting, kinematic and temporal analyses of baseball hitting were evaluated with a high-speed motion analysis system between 12 skilled youth and 12 skilled adult baseball players. There were only a small number of temporal differences between youth and adult hitters, with adult hitters taking significantly greater time than youth hitters during the stride phase and during the swing. Compared with youth hitters, adult hitters a) had significantly greater (p < .01) lead knee flexion when the hands started to move forward; b) flexed the lead knee over a greater range of motion during the transition phase (31° versus 13°); c) extended the lead knee over a greater range of motion during the bat acceleration phase (59° versus 32°); d) maintained a more open pelvis position at lead foot off ground; and e) maintained a more open upper torso position when the hands started to move forward and a more closed upper torso position at bat-ball contact. Moreover, adult hitters had greater peak upper torso angular velocity (857°/s versus 717°/s), peak left elbow extension angular velocity (752°/s versus 598°/s), peak left knee extension angular velocity (386°/s versus 303°/s), and bat linear velocity at bat-ball contact (30 m/s versus 25 m/s). The numerous differences in kinematic and temporal parameters between youth and adult hitters suggest that hitting mechanics are different between these two groups.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Ziemowit Bańkosz ◽  
Sławomir Winiarski

The study examined kinematic parameters and their inter- and intrasubject variability in the topspin forehand of seven top-level table tennis players. A wireless inertial measurement unit (IMU) system measured the movement of the playing hand to analyze the Ready position, Backswing, and Forward events, and a racket-mounted piezoelectric sensor captured the racket-ball Contact. In a four-phase cycle (Backswing, Hitting, Followthrough, and Back to Ready position), body sensors recorded the cycle and phase duration; angles in the sagittal plane at the shoulder, elbow, and wrist of the playing hand and at the knee joints; and acceleration of the playing hand at the moment of racket-ball contact. The coefficient of variation (CV) was calculated to determine the variability of kinematic parameters within and between players. The observed variability in stroke time duration was low (CV<20%) indicating constancy. The small-to-medium intraindividual variability of angles (CV<40%) indicates that each player used a broadly repeatable technique. The large intraindividual variability in movement was probably functional (i.e., motor adjustment and injury avoidance). Interindividual and intraindividual variability of knee and elbow angles was low; wrist extension was the most variable parameter (CV>40%) for all tasks, and shoulder joint variability was medium-to-large. Variability in hand acceleration was low (CV<20%). Individual players achieved relatively constant hand acceleration at the moment of contact, possibly because angular changes at one joint (e.g., shoulder) could be compensated for by changes at another (e.g., wrist). These findings can help to guide the teaching-learning process and to individualize the training process.


2020 ◽  
Vol 36 (2) ◽  
pp. 68-75 ◽  
Author(s):  
Micheal J. Luera ◽  
Brittany Dowling ◽  
Tyler W.D. Muddle ◽  
Nathaniel D.M. Jenkins

Pitch velocity (PV) is important for pitching success, and the pelvis and trunk likely influence pitch performance. The purposes of this study were to examine the differences in pelvis and trunk kinetics and kinematics in professional baseball pitchers who throw at lower versus higher velocities (HVPs) and to examine the relationships among pelvis and trunk kinetics and kinematics and PV during each phase of the pitch delivery. The pitch velocity, pelvis and trunk peak angular velocities, kinetic energies and torques, and elbow and shoulder loads were compared among HVPs (n = 71; PV ≥ 40.2 m/s) and lower velocities pitchers (n = 78; PV < 39.8 m/s), as were trunk and pelvis rotation, flexion, and obliquity among 7 phases of the pitching delivery. Relationships among the kinetic and kinematic variables and PVs were examined. Higher velocity pitchers achieved greater upper trunk rotation at hand separation (+7.2°, P < .001) and elbow extension (+5.81°, P = .002) and were able to generate greater upper trunk angular velocities (+36.6 m/s, P = .01) compared with lower velocity pitcher. Trunk angular velocity (r = .29) and upper trunk rotation at hand separation (r = .18) and foot contact (r = .17) were weakly related to PV. Therefore, HVPs rotate their upper trunk to a greater degree during the early phases of the pitching motion and subsequently generate greater trunk angular velocities and PV.


Author(s):  
Artūras Linkel ◽  
Julius Griškevičius ◽  
James Shippen ◽  
Barbara May ◽  
Kristina Daunoravičienė

One of most common ways to examine the quality of the patient’s upper extremity (UE) function is measuring the movement’s kinematic parameters during the motion. However, is it reliable to compare a patient’s UE motions data with healthy people’s characteristic parameters? In this paper is shown that intrapersonal coefficient of variability (CV) in angles amplitudes differs from 3.2% during elbow flexion to 52.9% during wrist abduction and CV in angular velocity differs from 22.1% during shoulder abduction to 66.3% during wrist abduction


1996 ◽  
Vol 12 (2) ◽  
pp. 207-224 ◽  
Author(s):  
Glenn S. Fleisig ◽  
Rafael F. Escamilla ◽  
James R. Andrews ◽  
Tomoyuki Matsuo ◽  
Yvonne Satterwhite ◽  
...  

Kinematic and kinetic aspects of baseball pitching and football passing were compared. Twenty-six high school and collegiate pitchers and 26 high school and collegiate quarterbacks were analyzed using three-dimensional high-speed motion analysis. Although maximum shoulder external rotation occurred earlier for quarterbacks, maximum angular velocity of pelvis rotation, upper torso rotation, elbow extension, and shoulder internal rotation occurred earlier and achieved greater magnitude for pitchers. Quarterbacks had shorter strides and stood more erect at ball release. During arm cocking, quarterbacks demonstrated greater elbow flexion and shoulder horizontal adduction. To decelerate the arm, pitchers generated greater compressive force at the elbow and greater compressive force and adduction torque at the shoulder. These results may help explain differences in performance and injury rates between the two sports.


Neurosurgery ◽  
2011 ◽  
Vol 70 (2) ◽  
pp. E516-E520 ◽  
Author(s):  
Leandro Pretto Flores

Abstract BACKGROUND AND IMPORTANCE: Restoration of elbow extension has not been considered of much importance regarding functional outcomes in brachial plexus surgery; however, the flexion of the elbow joint is only fully effective if the motion can be stabilized, what can be achieved solely if the triceps brachii is coactivated. To present a novel nerve transfer of a healthy motor fascicle from the ulnar nerve to the nerve of the long head of the triceps to restore the elbow extension function in brachial plexus injuries involving the upper and middle trunks. CLINICAL PRESENTATION: Case 1 is a 32-year-old man sustaining a right brachial extended upper plexus injury in a motorcycle accident 5 months before admission. The computed tomography myelogram demonstrated avulsion of the C5 and C6 roots. Case 2 is a 24-year-old man who sustained a C5-C7 injury to the left brachial plexus in a traffic accident 4 months before admission. Computed tomography myelogram demonstrated signs of C6 and C7 root avulsion. The technique included an incision at the medial border of the biceps, in the proximal third of the involved arm, followed by identification of the ulnar nerve, the radial nerve, and the branch to the long head of the triceps. The proximal stump of a motor fascicle from the ulnar nerve was sutured directly to the distal stump of the nerve of the long head of the triceps. Techniques to restore elbow flexion and shoulder abduction were applied in both cases. Triceps strength Medical Research Council M4 grade was obtained in both cases. CONCLUSION: The attempted nerve transfer was effective for restoration of elbow extension in primary brachial plexus surgery; however, it should be selected only for cases in which other reliable donor nerves were used to restore elbow flexion.


Author(s):  
Wei-Han Chen ◽  
Yu-Cheng Chiu ◽  
Chiang Liu ◽  
Ming-Sheng Chan ◽  
Nicholas J Fiolo ◽  
...  

This study compared the kinematic parameters of swing mechanics under toss batting (TB), motor imagery (MI), video projection (VP), and virtual reality (VR) conditions during baseball batting. Nine college baseball players performed three swings to hit a tossed ball under TB conditions or a virtual ball under MI, VP, and VR conditions. The results revealed that upper trunk backward rotation was smaller in the loading phase under the VP and VR conditions than under the TB and MI conditions and lower under VR than under the VP condition ( p < 0.05) except at the load event. Pelvic backward rotation was smaller under the VR condition than under the TB, MI, and VP conditions ( p < 0.05). In the swing phase, TB demonstrated higher peak velocity at the head of the bat, lead elbow extension, and pelvis and upper trunk rotation than did MI, VP, and VR, whereas VP also demonstrated higher peak velocity in pelvic forward rotation than did VR ( p < 0.05). In summary, VR demonstrates a more realistic response in the loading phase and reduced pelvic backward rotation but lower movement velocities. Coaches should pay attention to movement differences between swing conditions when arranging a swing training plan.


Author(s):  
Derek Lura ◽  
Rajiv Dubey ◽  
Stephanie L. Carey ◽  
M. Jason Highsmith

The prostheses used by the majority of persons with hand/arm amputations today have a very limited range of motion. Transradial (below the elbow) amputees lose the three degrees of freedom provided by the wrist and forearm. Some myoeletric prostheses currently allow for forearm pronation and supination (rotation about an axis parallel to the forearm) and the operation of a powered prosthetic hand. Older body-powered prostheses, incorporating hooks and other cable driven terminal devices, have even fewer degrees of freedom. In order to perform activities of daily living (ADL), a person with amputation(s) must use a greater than normal range of movement from other body joints to compensate for the loss of movement caused by the amputation. By studying the compensatory motion of prosthetic users we can understand the mechanics of how they adapt to the loss of range of motion in a given limb for select tasks. The purpose of this study is to create a biomechanical model that can predict the compensatory motion using given subject data. The simulation can then be used to select the best prosthesis for a given user, or to design prostheses that are more effective at selected tasks, once enough data has been analyzed. Joint locations necessary to accomplish the task with a given configuration are calculated by the simulation for a set of prostheses and tasks. The simulation contains a set of prosthetic configurations that are represented by parameters that consist of the degrees of freedom provided by the selected prosthesis. The simulation also contains a set of task information that includes joint constraints, and trajectories which the hand or prosthesis follows to perform the task. The simulation allows for movement in the wrist and forearm, which is dependent on the prosthetic configuration, elbow flexion, three degrees of rotation at the shoulder joint, movement of the shoulder joint about the sternoclavicular joint, and translation and rotation of the torso. All joints have definable restrictions determined by the prosthesis, and task.


Sign in / Sign up

Export Citation Format

Share Document