Component Inertia Modeling of Segmental Wobbling and Rigid Masses

2006 ◽  
Vol 22 (2) ◽  
pp. 148-154 ◽  
Author(s):  
Marianne J.R. Gittoes ◽  
David G. Kerwin

A modification to an existing mathematical model is described, which permits the determination of subject-specific inertia parameters for wobbling and rigid masses of female body segments. The model comprises segment-specific soft tissue, bone, and lung components. A total of 59 geometric solids (40 soft tissue, 17 bone, 2 lung) were used to represent the body components. Ninety-five anthropometric measurements were collected from 7 female participants and were used to develop and evaluate the model. The success of the model is evaluated using predicted mass and mass distribution. The overall absolute accuracy in predicted whole body mass was better than 3.0%, with a maximum error of 4.9%. The appropriateness of the cadaver-based density values used in the model is addressed and the accuracy of the component inertia model in relation to uniform density models is discussed. The model offers a novel approach for determining component inertia parameters, which have been used successfully in a wobbling mass model to produce realistic kinetic analyses of drop-landings.

Author(s):  
Geoff Hide ◽  
Jennifer Humphries

Computed tomography (CT), along with its cross-sectional partner MRI, continues to evolve apace. Although MRI retains the larger role in the musculoskeletal system due to its unparalleled soft tissue contrast and, not least, its lack of ionizing radiation, CT offers significant advantages in many areas. Imaging acute trauma is more rapid with CT, allowing ‘whole body’ assessment of patients following polytrauma, and CT is more useful than MRI in demonstrating the configuration of fractures, aiding surgical planning. CT can clearly identify cortical bone and areas of calcification, making the diagnosis of tarsal coalitions straightforward and facilitating the diagnosis and characterization of bone tumours such as osteoid osteoma and chondroid lesions. CT arthrography supplements standard imaging with intra-articular contrast to allow the detection of subtle joint abnormalities, and CT can demonstrate needles precisely within bone and soft tissue to enable the performance of complex image-guided procedures. Developments in CT have been especially rapid in the past decade and although this has particularly impacted on cardiac imaging, other areas of medicine, including rheumatology, have benefited. High multislice scanners can obtain data for a volume of tissue allowing reconstruction of slices with exceptional detail in any plane, and can rapidly image large areas of the body such as the spine. CT is responsible for a large proportion of the population’s medical radiation exposure. Although techniques allowing reduction in dose continue to advance, radiologists and referrers retain responsibility to ensure that requests for CT examinations are necessary and justifiable.


F1000Research ◽  
2015 ◽  
Vol 3 ◽  
pp. 223 ◽  
Author(s):  
Christopher Dembia ◽  
Jason K. Moore ◽  
Mont Hubbard

We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.


Author(s):  
Geoff Hide ◽  
Jennifer Humphries

Computed tomography (CT), along with its cross-sectional partner MRI, continues to evolve apace. Although MRI retains the larger role in the musculoskeletal system due to its unparalleled soft tissue contrast and, not least, its lack of ionizing radiation, CT offers significant advantages in many areas. Imaging acute trauma is more rapid with CT, allowing 'whole body' assessment of patients following polytrauma, and CT is more useful than MRI in demonstrating the configuration of fractures, aiding surgical planning. CT can clearly identify cortical bone and areas of calcification, making the diagnosis of tarsal coalitions straightforward and facilitating the diagnosis and characterization of bone tumours such as osteoid osteoma and chondroid lesions. CT arthrography supplements standard imaging with intra-articular contrast to allow the detection of subtle joint abnormalities, and CT can demonstrate needles precisely within bone and soft tissue to enable the performance of complex image-guided procedures. Developments in CT have been especially rapid in the past decade and although this has particularly impacted on cardiac imaging, other areas of medicine, including rheumatology, have benefited. High multislice scanners can obtain data for a volume of tissue allowing reconstruction of slices with exceptional detail in any plane, and can rapidly image large areas of the body such as the spine. CT is responsible for a large proportion of the population's medical radiation exposure. Although techniques allowing reduction in dose continue to advance, radiologists and referrers retain responsibility to ensure that requests for CT examinations are necessary and justifiable.


2000 ◽  
Vol 89 (6) ◽  
pp. 2438-2446 ◽  
Author(s):  
Jose A. Adams ◽  
Martin J. Mangino ◽  
Jorge Bassuk ◽  
D. Michael Inman ◽  
Marvin A. Sackner

A motion platform was developed that oscillates an animal in a foot-to-head direction ( z-plane). The platform varies the frequency and intensity of acceleration, imparting periodic sinusoidal inertial forces (pGz) to the body. The aim of the study was to characterize ventilation produced by the noninvasive motion ventilator (NIMV) in animals with healthy and diseased lungs. Incremental increases in pGz (acceleration) with the frequency held constant ( f = 4 Hz) produced almost linear increases in minute ventilation (V˙e). Frequencies of 2–4 Hz produced the greatest V˙eand tidal volume (Vt) for any given acceleration between ±0.2 and ±0.8 G. Increasing the force due to acceleration produced proportional increases in both transpulmonary and transdiaphragmatic pressures. Increasing transpulmonary pressure by increasing pGz produced linear increases in Vt, similar to spontaneous breathing. NIMV reversed deliberately induced hypoventilation and normalized the changes in arterial blood gases induced by meconium aspiration. In conclusion, a novel motion platform is described that imparts periodic sinusoidal acceleration forces at moderate frequencies (4 Hz) to the whole body in the z-plane. These forces, when properly adjusted, are capable of highly effective ventilation of normal and diseased lungs. Such noninvasive ventilation is accomplished at airway pressures equivalent to atmospheric or continuous positive airway pressure, with acceleration forces less than ±1 Gz.


F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 223
Author(s):  
Christopher Dembia ◽  
Jason K. Moore ◽  
Mont Hubbard

We present an open source software implementation of a popular mathematical method developed by M.R. Yeadon for calculating the body and segment inertia parameters of a human body. The software is written in a high level open source language and provides three interfaces for manipulating the data and the model: a Python API, a command-line user interface, and a graphical user interface. Thus the software can fit into various data processing pipelines and requires only simple geometrical measures as input.


1982 ◽  
Vol 21 (04) ◽  
pp. 136-139 ◽  
Author(s):  
C.-J. Edeling

Whole-body scintigraphy with both 99mTc-phosphonate and 67Ga was performed on 92 patients suspected of primary bone tumors. In 46 patients with primary malignant bone tumors, scintigraphy with 99mTc-phosphonate disclosed the primary tumor in 44 cases and skeletal metastases in 11, and 67Ga scintigraphy detected the primary tumor in 43 cases, skeletal metastases in 6 cases and soft-tissue metastases in 8 cases. In 25 patients with secondary malignant bone tumors, bone scintigraphy visualized a single lesion in 10 cases and several lesions in 15 cases, and 67Ga scintigraphy detected the primary tumor in 17 cases, skeletal metastases in 17 cases and soft-tissue metastases in 9 cases. In 21 patients with benign bone disease positive uptake of 99mTc-phosphonate was recognized in 19 cases and uptake of 67Ga in 17 cases. It is concluded that bone scintigraphy should be used in patients suspected of primary bone tumors. If malignancy is suspected, 67Ga scintigraphy should be performed in addition.


1976 ◽  
Vol 15 (05) ◽  
pp. 248-253
Author(s):  
A. K. Basu ◽  
S. K. Guha ◽  
B. N. Tandon ◽  
M. M. Gupta ◽  
M. ML. Rehani

SummaryThe conventional radioisotope scanner has been used as a whole body counter. The background index of the system is 10.9 counts per minute per ml of sodium iodide crystal. The sensitivity and derived sensitivity parameters have been evaluated and found to be suitable for clinical studies. The optimum parameters for a single detector at two positions above the lying subject have been obtained. It has been found that for the case of 131I measurement it is possible to assay a source located at any point in the body with coefficient of variation less than 5%. To add to the versatility, a fixed geometry for in-vitro counting of large samples has been obtained. The retention values obtained by the whole body counter have been found to correlate with those obtained by in-vitro assay of urine and stool after intravenous administration of 51Cr-albumin.


2008 ◽  
Vol 396-398 ◽  
pp. 569-572
Author(s):  
Fumio Watari ◽  
Shigeaki Abe ◽  
I.D. Rosca ◽  
Atsuro Yokoyama ◽  
Motohiro Uo ◽  
...  

Nanoparticles may invade directly into the internal body through the respiratory or digestive system and diffuse inside body. The behavior of nanoparticles in the internal body is also essential to comprehend for the realization of DDS. Thus it is necessary to reveal the internal dynamics for the proper treatments and biomedical applications of nanoparticles. In the present study the plural methods with different principles such as X-ray scanning analytical microscope (XSAM), MRI and Fluorescent microscopy were applied to enable the observation of the internal diffusion of micro/nanoparticles in the (1) whole body level, (2) inner organ level and (3) tissue and intracellular level. Chemical analysis was also done by ICP-AES for organs and compared with the results of XSAM mapping.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dmitry M. Davydov ◽  
Andrey Boev ◽  
Stas Gorbunov

AbstractSituational or persistent body fluid deficit (i.e., de- or hypo-hydration) is considered a significant health risk factor. Bioimpedance analysis (BIA) has been suggested as an alternative to less reliable subjective and biochemical indicators of hydration status. The present study aimed to compare various BIA models in the prediction of direct measures of body compartments associated with hydration/osmolality. Fish (n = 20) was selected as a biological model for physicochemically measuring proximate body compartments associated with hydration such as water, dissolved proteins, and non-osseous minerals as the references or criterion points. Whole-body and segmental/local impedance measures were used to investigate a pool of BIA models, which were compared by Akaike Information Criterion in their ability to accurately predict the body components. Statistical models showed that ‘volumetric-based’ BIA measures obtained in parallel, such as distance2/Rp, could be the best approach in predicting percent of body moisture, proteins, and minerals in the whole-body schema. However, serially-obtained BIA measures, such as the ratio of the reactance to resistance and the resistance adjusted for distance between electrodes, were the best fitting in predicting the compartments in the segmental schema. Validity of these results should be confirmed on humans before implementation in practice.


Birds ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 138-146
Author(s):  
Eduardo J. Rodríguez-Rodríguez ◽  
Juan J. Negro

The family Ciconiidae comprises 19 extant species which are highly social when nesting and foraging. All species share similar morphotypes, with long necks, a bill, and legs, and are mostly coloured in the achromatic spectrum (white, black, black, and white, or shades of grey). Storks may have, however, brightly coloured integumentary areas in, for instance, the bill, legs, or the eyes. These chromatic patches are small in surface compared with the whole body. We have analyzed the conservatism degree of colouration in 10 body areas along an all-species stork phylogeny derived from BirdTRee using Geiger models. We obtained low conservatism in frontal areas (head and neck), contrasting with a high conservatism in the rest of the body. The frontal areas tend to concentrate the chromatic spectrum whereas the rear areas, much larger in surface, are basically achromatic. These results lead us to suggest that the divergent evolution of the colouration of frontal areas is related to species recognition through visual cue assessment in the short-range, when storks form mixed-species flocks in foraging or resting areas.


Sign in / Sign up

Export Citation Format

Share Document